DOI: 10.14704/nq.2018.16.6.1571

The Global Convergence Analysis of Brain Storm Optimization

Ying Qiao, Yuansheng Huang, Yuelin Gao

Abstract


Brain storm optimization (BSO) is a novel population-based swarm intelligence algorithm which mimics the human brainstorming process. It transplants the brainstorming process in human being into optimization algorithm design and gains successes in solving many complex optimization problems of the real world. In this paper, the asymptotic convergence properties of BSO are analyzed. Based on the theorem of probability and calculus, it has been proven that BSO, under some assumptions, can asymptotically converge to a global optimal solution set with probability one.

Keywords


Brain Storm Optimization, Swarm Intelligence Algorithm, Global Convergence Analysis

Full Text:

PDF

References


Chen JF, Xie YJ, Ni JJ. Brain storm optimization model based on uncertainty information.2014 Tenth International Conference on Computational Intelligence and Security, Kunming 2015; 99-103.

Cheng S, Shi YH, Qin QD, Ting TO, Bai RB. Maintaining population diversity in brain storm optimization algorithm. IEEE Congress on Evolutionary Computation, Beijing 2014; 4(3): 3230-37.

Cui ZH, Fan SJ, Zeng JC, Shi ZZ. APOA with parabola model for directing orbits of chaotic systems. International Journal of Bio-Inspired Computation 2013; 5(1): 67-72.

Dorigo M. Optimization learning and natural algorithms, Ph.D. Dissertation (in Italian). Politecnico di Milano, Italy, 1992.

Duan HB, Li C. Quantum-behaved brain storm optimization approach to solving Loney’s solenoid problem. IEEE Transactions on Magnetics 2015; 51(1): 1-7.

Duan HB, Li ST, Shi YH. Predator-prey brain storm optimization for DC brushless motor. IEEE Transactions on magnetics 2013; 49(10): 5536-40.

Fogel LJ, Owens AJ, Walsh MJ. Artificial intelligence through simulated evolution. Wiley 1966; 21(5): 227-96.

Gao H, Xu WB. A new particle swarm algorithm and its globally convergent modifications. IEEE Transactions on Systems, Man, and Cybernetics 2011; 41(5): 1334-51.

Holland JH. Adaptation in Natural and Artificial Systems. London: University of Michigan Press, 1975; 6(2): 126-37.

Jadhav HT, Sharma U, Patel J, Roy R. Brain storm optimization algorithm based economic dispatch considering wind power. IEEE International Conference on Power and Energy, Kota Kinabalu Sabah 2012: 588-93.

Jiang QY, Wang L, Hei XH. Parameter identification of chaotic systems using artificial raindrop algorithm. Journal of Computational Science 2015; 2015(8): 20-31.

Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization 2007; 39(3): 459-71.

Kennedy J, Eberhart R. Particle swarm optimization. IEEE International Conference on Neural Networks 1995; 4(8):1942-48.

Kesavan E, Gowthaman N, Tharani S, Manoharan S, Arunkumar E. Design and implementation of internal model control and particle swarm optimization based PID for heat exchanger system. International Journal of Heat and Technology 2016; 34(3): 386-90.

Keshtkar MM. Energy, exergy analysis and optimization by a genetic algorithm of a system based on a solar absorption chiller with a cylindrical PCM and nano-fluid. International Journal of Heat and Technology 2017; 35(2): 416-20.

Lenin K, Reddy BR, SuryaKalavathi M.Brain storm optimization algorithm for solving optimal reactive power dispatch problem, International Journal of Research in Electronics and Communication Technology 2014; 1(3): 25-30.

Li JN, Duan HB. Simplified brain storm optimization approach to control parameter optimization in F/A-18 automatic carrier landing system. Aerospace Science and Technology 2015; 42: 187-95.

Qiu HX, Duan HB. Receding horizon control for multiple UAV formation flight based on modified brain storm optimization. Nonlinear Dynamics 2014; 78(3): 1973-88.

Rao RV, Savsani VJ, Vakharia DP. Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-Aided Design 2011; 43(3):303-15.

Rashedi E, Nezamabadi-pour H, Saryazdi S.GSA: a gravitational sarch algorithm. Information Sciences 2009; 179(13): 2232-48.

Salcedo-Sanz S, Del Ser J, Landa-Torres I, Gil-López S, Portilla-Figueras JA. The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems. The Scientific World Journal, 2014; 8: 739-68.

Schwefel HP. Evolution strategies and numerische Optimierung. Ph. D. thesis, Technische Universität Berlin, 1975.

Sen GD, Sharma J, Goyal GR, Singh AK. A Multi-objective PSO (MOPSO) algorithm for optimal active power dispatch with pollution control. Mathematical Modelling of Engineering Problems 2017; 4(3): 113-19.

Shi YH. An optimization algorithm based on brainstorming process. International Journal of Swarm Intelligence Research 2011; 2(4): 35-62.

Shi YH. Brain storm optimization algorithm in objective space. IEEE Congress on Evolutionary Computation 2015; 6728(3): 303-309.

Shi YH. Brain storm optimization algorithm, Lecture Notes in Computer Science 2011; 672(8):303-09.

Storn R, Price K. Differential evolution-a simple and efficient heuristic strategy for global optimization over continuous spaces. Journal of Global Optimization 1997; 11(4): 341-59.

Tan Y, Zhu YC. Fireworks algorithm for optimization. In Advances in Swarm Intelligence. Lecture Notes in Computer Science 2010; 21(7): 355-64.

Wang TC, Xie YZ. BP-GA data fusion algorithm studies oriented to smart home, Mathematical Modelling of Engineering Problems 2016; 3(3): 135-40.

Wang X. The application of genetic algorithms in the biological medical diagnostic research. International Journal Bioautomation 2016; 20(4): 493-504.

Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1997; 1(1): 67-82.

Xue JQ, Wu YL, Shi YH, Cheng S. Brain storm optimization algorithm for multi-objective optimization problems. Lecture Notes in Computer Science 2012; 7331(4): 513-19.

Yang XS. Nature-Inspired Metaheuristic Algorithms (Second Edition). Luniver Press, 2010.

Yang YT, Shi YH, Xia SR. Advanced discussion mechanism-based brain storm optimization algorithm. Soft Computing 2015; 19(10): 2997-3007.

Zhan ZH, Chen WN, Lin Y, Gong YJ, Li YL, Zhang J. Parameter investigation in brain storm optimization. IEEE Symposium Series on Computational Intelligence, Singapore 2013; 8237(1): 103-10.

Zhan ZH, Zhang J, Shi YH, Liu HL. A modified brain storm optimization. IEEE Congress on Evolutionary Computation, Brisbane 2012; 22(10): 1-8.

Zhou DD, Shi YH, Cheng S. Brain storm optimization algorithm with modified step-size and individual generation. Lecture Notes in Computer Science 2012; 7331(1): 243-52.

Zou G. Ant colony clustering algorithm and improved markov random fusion algorithm in image segmentation of brain images. International Journal Bioautomation 2016; 20(4): 505-14.


Supporting Agencies





| NeuroScience + QuantumPhysics> NeuroQuantology :: Copyright 2001-2018