DOI: 10.14704/nq.2019.17.1.1937

Efficiency in Simulating Information Networks

Daegene Song


Recent successes in quantum technology have provided a number of powerful tools for viewing nature in terms of information. In particular, quantum information science has proved to be a useful way to greatly simplify the way the universe is viewed as well as treating the subject, an observer, and the object, the observed universe, on an equal footing. Several important applications in quantum technology such as communication, information processing, etc., use a distinctive property of entanglement. In this article, a numerical simulation is applied to a swapping measurement protocol involving two 3-level entangled states. A different condition, in non-maximal states, that approximates the optimal result (i.e., the weaker link between the two initial states) will be shown through a numerical method. This different class of states is distributed just as wide as the class yielding the optimal result. The result may be useful in establishing a long distance maximal entanglement that is often fragile and unstable due to noise.


Quantum Information Science, Numerical Methods, Entanglement, Nonlocality

Full Text:



Bennett CH, Bernstein HJ, Popescu S and Schumacher B. Concentrating partial entanglement by local operations. Phys Rev A 1996; 53: 2046-2052.

Bose S, Vedral V and Knight PL. Multiparticle generalization of entanglement swapping. Phys Rev A 1998; 57: 822-829.

Boulant N, Edmonds K, Yang J, Pravia MA, and Cory DG. Experimental demonstration of an entanglement swapping operation and improved control in NMR quantum-information processing. Phys Rev A 2003; 68: 032305.

Briegel H-J, Dür W, Cirac JI, and Zoller P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys Rev Lett 1998; 81: 5932-5935.

Cleve R and Buhrman H. Substituting quantum entanglement for communication. Phys Rev A 1997; 56: 1201-1204.

Dür W, Briegel H-J, Cirac JI, and Zoller P. Quantum repeaters based on entanglement purification. Phys Rev A 1999; 59: 169-181.

Ekert AK. Quantum cryptography based on Bell's theorem. Phys Rev Lett 1991; 67: 661-663.

Farmelo G. Random acts of science. The New York Times (June 11, 2010).

Hardy L. Method of areas for manipulating the entanglement properties of one copy of a two-particle pure entangled state. Phys Rev A 1999; 60: 1912-1923.

Hardy L and Song D. Entanglement swapping chains for general pure states. Phys Rev A 2000; 62: 052315.

Hsu L-Y. Optimal entanglement purification via entanglement swapping with least classical communication. Phys Lett A 2002; 297: 126-128.

Jennewein T, Weihs G, Pan J-W, and Zeilinger A. Experimental nonlocality proof of quantum teleportation and entanglement swapping. Phys Rev Lett 2001; 88: 017903.

Jonathan D and Plenio MB. Minimal conditions for local pure-state entanglement manipulation. Phys Rev Lett 1999; 83: 1455-1458.

Kaltenbaek R, Prevedel R, Aspelmeyer M and Zeilinger A. High-fidelity entanglement swapping with fully independent sources. Phys Rev A 2009; 79: 040302(R).

Kok P et al. Linear optical quantum computing with photonic qubits. Rev Mod Phys 2007; 79: 135-174.

Ladd TD et al. Quantum computers. Nature 2010; 464: 45-53

Lo H-K and Popescu S. Concentrating entanglement by local actions: Beyond mean values. Phys. Rev. A 2001; 63: 022301.

Ma X-S, et. al. Quantum teleportation over 143 kilometres using active feed-forward. Nature 2012; 489: 269-273.

Modlawska J and Grudka A. Increasing singlet fraction with entanglement swapping. Phys Rev A 2008; 78: 032321.

Pan J-W, Bouwmeester D, Weinfurter H and Zeilinger A. Experimental entanglement swapping: entangling photons that never interacted. Phys Rev Lett 1998; 80: 3891-3894.

Peres A. Quantum theory: concepts and methods, Kluwer, Dordrecht, 1997.

Popper KR. Conjectures and refutations: the growth of scientific knowledge. Routledge; 2nd edition, 200).

Riebe M et al. Deterministic entanglement swapping with an ion-trap quantum computer, Nat Phys 2008; 4: 839-842.

Sciarrino F et al. Delayed-choice entanglement swapping with vacuum–one-photon quantum states. Phys Rev A 2002; 66: 024309.

Shi B-S, Jiang Y-K and Guo G-C. Optimal entanglement purification via entanglement swapping. Phys Rev A 2000; 62: 054301.

Tittel W, Brendel J, Zbinden H, Gisin N. Violation of Bell inequalities by photons more than 10 km apart. Phys Rev Lett 1998; 81: 3563-3566.

Waks E, Zeevi A, and Yamamoto Y. Security of quantum key distribution with entangled photons against individual attacks. Phys Rev A 2002; 65: 052310.

Yang M, Delgado A, Roa L, and Saavedra C. Entanglement concentration for non-maximally entangled states of qudits. Opt Comm 2009; 282: 1482-1487.

Yin J et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 2012; 488: 185-188.

Yin J et. al. Satellite-based entanglement distribution over 1200 kilometers. Science 2017; 356: 1140-1144.

Zukowski M, Zeilinger A, Horne MA and Ekert AK. ‘‘Event-ready-detectors’’ Bell experiment via entanglement swapping. Phys Rev Lett 1993; 71: 4287-4290.

Supporting Agencies

| NeuroScience + QuantumPhysics> NeuroQuantology :: Copyright 2001-2019