DOI: 10.14704/nq.2019.17.2.1973

On The Existence of The DNA Resonance Code and Its Possible Mechanistic Connection to The Neural Code

Ivan V. Savelyev, Nelli V. Zyryanova, Oksana O. Polesskaya, Max Myakishev-Rempel


A possible role of DNA sequence-specific electromagnetic resonances in the formation of the morphogenic field is discussed. It is proposed that the morphogenic field is formed by resonant oscillations of delocalized electron and proton clouds in the base stack of the DNA. Models are proposed for DNA sequence-dependence of possible electromagnetic resonance patterns. It is proposed that genomic repeats act as universal resonators providing the bidirectional communication between the chromatin structure and the morphogenic field. It is proposed that genomic repeats participate in two major functions - the morphogenic function and the brain function. It is proposed that microtubules mediate the resonance communication between the action potential in axons and genomic repeats in the nucleus. The existence of an algorithm is proposed responsible for the conversion of genomic information into the shape of the body. Such an algorithm is named the DNA resonance code. It is proposed that the DNA resonance code can be deciphered by targeted efforts in biophysics, spectroscopy, molecular modeling, and experimental genomics. A possible resonance interaction between the DNA of neurons and neuronal firing is discussed and it is suggested that deciphering the DNA resonance code may be of help to deciphering the neuronal coding in the brain. It is suggested that the deciphering of the DNA resonance code would benefit medical applications related to morphogenesis and brain function.


alu, transposon, microtubules, biofield, morphogenetic field, morphic resonance, biological development

Full Text:



A. Hill RJ, Sedman VL, Allen S, Williams P, Paoli M, Adler‐Abramovich L, Gazit E, Eaves L, Tendler SJ. Alignment of aromatic peptide tubes in strong magnetic fields. Advanced Materials 2007; 19(24): 4474-4479.

Alexander and Gurwitsch L. Weitere Untersuchungen über mitogenetische Strahlungen. Archiv für mikroskopische Anatomie und Entwicklungsmechanik 1925; 104(1): 109–115.

Arnold AR, Grodick MA, Barton JK. DNA Charge Transport: from Chemical Principles to the Cell. Cell chemical biology 2016; 23(1): 183–197.

Beloussov LV, Burlakov AB, Louchinskaia NN (2003) Biophotonic patterns of optical interactions between fish eggs and embryos. Indian journal of experimental biology 2003; 41(5): 424–430.

Beloussov LV, Opitz JM, Gilbert SF. Life of Alexander G. Gurwitsch and his relevant contribution to the theory of morphogenetic fields. International Journal of Developmental Biology. 2004; 41(6): 771-777. Available at:

Bischof M. Biophotonen: Das Licht in Unseren Zellen. Zweitausendeins, 1995.

Blois MS Jr, Maling JE, Taskovich LT. On the electron spin resonances in DNA. Biophysical journal 1963; 3: 275–297.

Blumenfeld LA. Abnormal magnetic properties of nucleic acids. Biophysics 1959; 4(5): 515–519.

Blumenfeld LA. About ferromagnetism of organic structures. Doklady USSR Academy of Sciences 1963; 148(2): 361–364.

Brandes R, Kearns DR, Rupprecht A. A 2H-NMR study of the DNA hydration water in solid Li-DNA assembles. Biopolymers 1988; 27(5): 717–732.

Burkov VD, Burlakov AB, Perminov SV. Correction of Long Range Interaction Between Biological Objects Using Corner-Cube Reflectors. Biomedical Radioelectronics 2008; (8-9): 41–48.

Burlakov AB. Distant physical interactions between the developing fish embryos. Biophotonics and Coherent Systems Moscow Univ Press 2000; pp: 298–304.

Burlakov AB and Lebedeva NE. Adequacy of biological models while investigating effects of ultra low dose chemical and physical actions. Weak and ultraweak fields and emissions in biology and medicine 2015; pp: 21–22.

Burlakov AB, Burlakova OV, Golichenkov VA. The long range interactions of different age embryo loach Misgurnus fossilis. Doklady Biological Sciences 1999; 368(4): 562–564.

Burlakov AB, Burlakova OV, Golichenkov VA. Distant wave-mediated interactions in early embryonic development of the loach Misgurnus fossilis L. Russian Journal of Developmental Biology 2000; 31(5): 287–292.

Burlakov AB, Burlakova OV, Korolev YN, Golichenkov VA. Polarization effects in long range interaction of biological objects. Moscow University Biological Sciences Bulletin. Series 2002; 16(2): 3–8.

Burlakov AB, Medvedeva AA, Burlakova OV, Malakhov YI, Golichenkov VA. Special aspects of biological effects of loach’s ultraweak emissions spectral components in early ontogenesis. In Weak and ultraweak fields and emissions in biology and medicine 2006; pp: 34–40.

Burlakov AB, Burlakova OV, Golichenkov VA. Possible changes of individual biological time by weak electromagnetic emissions. In Weak and ultraweak fields and emissions in biology and medicine. St-Petersburg 2009; pp: 40–47.

Burlakov AB, Burlakova OV, Golichenkov VA. Ultraweak bioemissions role in development of lower vertebrates. Krasnodar: Krasnodar’s Center of Scientific and Technical Information. Physics, biophysics and information technology 2010; pp: 81–84.

Burlakov AB, Kapranov YS, Kufal GE, Perminov SV. About possible influence on biological object electromagnetic fields. Weak and Ultraweak Fields and Radiation in Biology and Medicine-Proceedings of IV International Congress 2012; pp: 111–112.

Burlakov AB, Burlakova OV, Golichenkov VA. The long range interactions of biological systems. In Weak and ultraweak fields and radiation in biology and medicine 2012; pp: 5–8.

Burlakov AB, Chernova GB, Babkina VV, Sidorov VV, Andeber OP. Variability of morphological characters as a manifestation of the effects of radiation extremely high frequency and their evaluation in the context of bioinformatics. Biomedical Radioelectronics 2017; (1): 44–50.

Chatzidimitriou-Dreismann CA. Protonic delocalization and quantum correlations in the H-bond dynamics of G--C and κ--π DNA base pairs. International journal of quantum chemistry 1993; 46(3): 483–498.

Chen LL and Carmichael GG. Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Molecular Cell 2009; 35(4), 467–478.

Chen P, Zhu P, Li G. New insights into the helical structure of 30-nm chromatin fibers. Protein & Cell 2014; 5(7): 489–491.

Cifra M, Fields JZ, Farhadi A. Electromagnetic cellular interactions. Progress in Biophysics and Molecular Biology 2011; 105(3): 223–246.

Ciszak M, Comparini D, Mazzolai B, Baluska F, Arecchi FT, Vicsek T, Mancuso S. Swarming behavior in plant roots. PloS One 2012; 7(1): e29759.

Craddock TJA, Friesen D, Mane J, Hameroff S, Tuszynski JA. The feasibility of coherent energy transfer in microtubules. Journal of the Royal Society, Interface / the Royal Society 2014; 11(100): 20140677.

Davenas E, Beauvais F, Amara J, Oberbaum M, Robinzon B, Miadonnai A, Tedeschi A, Pomeranz B, Fortner P, Belon P, Sainte-Laudy J. Human basophil degranulation triggered by very dilute antiserum against IgE. Nature 1988; 333(6176): 816-818.

Dogra S, Awasthi P, Tripathi S, Pradeep TP, Nair MS, Barthwal R. NMR-based structure of anticancer drug mitoxantrone stacked with terminal base pair of DNA hexamer sequence d-(ATCGAT)2. Journal of Biomolecular Structure & Dynamics 2014; 32(7): 1164–1183.

Farhadi A, Forsyth C, Banan A, Shaikh M, Engen P, Fields JZ, Keshavarzian A. Evidence for non-chemical, non-electrical intercellular signaling in intestinal epithelial cells. Bioelectrochemistry 2007; 71(2): 142–148.

Fowler PW, Lillington M, Olson LP. Aromaticity, π-electron delocalization, and ring currents. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 2007; 79(6): 969–979.

Fuss JO, Tsai CL, Ishida JP, Tainer JA. Emerging critical roles of Fe-S clusters in DNA replication and repair. Biochimica et Biophysica Acta 2015; 1853(6): 1253–1271.

Gariaev P, Birshtein BI, Iarochenko AM, Marcer PJ, Tertishny GG, Leonova KA, Kaempf U. The DNA-wave biocomputer. International Journal of Computing Anticipatory Systems. Ed. Daniel Dubois, Published by CHAOS 2001; 10. Retrieved from

Gariaev PP. Wave genome 1994; pp: 2–8. Public Benefit.

Guelev V, Lee J, Ward J, Sorey S, Hoffman DW, Iverson BL. Peptide bis-intercalator binds DNA via threading mode with sequence specific contacts in the major groove. Chemistry & Biology 2001; 8(5): 415–425.

Gurwitsch A. Über den Begriff des Embryonalen feldes. Wilhelm Roux’ Archiv Fur Entwicklungsmechanik Der Organismen 1922; 51(1): 383–415.

Gurwitsch A. Die Natur des spezifischen Erregers der Zellteilung. Archiv Für Mikroskopische Anatomie Und Entwicklungsmechanik 1923; 100(1): 11–40.

Gurwitsch AA. The problem of mitogenetic radiation as molecular biology aspect. Medicine, 1968. Retrieved from

Gurwitsch AG and Gurwitsch AA. Principles of analytical biology and cell fields theory. (L. V. Beloussov, Ed.). Moscow: Nauka, 1991.

Gurwitsch L. Untersuchungen über mitogenetische Strahlen. Archiv Für Mikroskopische Anatomie Und Entwicklungsmechanik 1924; 103(3): 483–489.

Gurwitsсh A and Gurwitsсh L. Twentieth anniversary of mitogenetic radiation (discovery, development, future directions). Biology Bulletin Reviews 1943; 16(3): 1–28.

Guschin VV, Polesskaya O, Zyryanova N, Tovmash A, Myakishev-Rempel M. On the function of DNA magnetism. VIXRA 2018; 1803.0075.

Guschin VV, Polesskaya O, Zyryanova N, Tovmash A, Mara A, Erdyneeva E, Myakishev-Rempel M. Possible Models of Ring Current Oscillations in DNA. VIXRA 2018; 1803.0176.

Hameroff S. Orchestrated Reduction of Quantum Coherence in Brain Microtubules: A Model for Consciousness. NeuroQuantology 2007; 5(1).

Hameroff S and Penrose R. Orchestrated objective reduction of quantum coherence in brain microtubules: The ‘Orch OR’ model for consciousness. Mathematics and Computers in Simulation 1996; 40: 453–480.

Hameroff S, Nip A, Porter M, Tuszynski J. Conduction pathways in microtubules, biological quantum computation, and consciousness. Bio Systems 2002; 64(1-3): 149–168.

Hameroff SR. Ch’i: A Neural Hologram? Microtubules, Bioholography, and Acupuncture. The American Journal of Chinese Medicine 1974; 02(02): 163–170.

Hameroff SR, Craddock TJA, Tuszynski JA. Quantum effects in the understanding of consciousness. Journal of Integrative Neuroscience 2014; 13(02): 229–252.

Hanke JH, Hambor JE, Kavathas P. Repetitive Alu elements form a cruciform structure that regulates the function of the human CD8 alpha T cell-specific enhancer. Journal of molecular biology 1995; 246(1): 63–73.

Häsler J and Strub K. Alu elements as regulators of gene expression. Nucleic Acids Research 2006; 34(19): 5491–5497.

Healy EF (2011) Heisenberg’s chemical legacy: resonance and the chemical bond. Foundations of Chemistry 13(1). Springer: 39–49.

Hellmann-Blumberg U, Hintz MF, Gatewood JM, et al. (1993) Developmental differences in methylation of human Alu repeats. Molecular and cellular biology 13(8): 4523–4530.

Holmlin RE, Dandliker PJ, Barton JK. Charge Transfer through the DNA Base Stack. Angewandte Chemie 1997; 36(24): 2714–2730.

Hon LS and Jain AN. Compositional structure of repetitive elements is quantitatively related to co-expression of gene pairs. Journal of Molecular Biology 2003; 332(2): 305–310.

Jabbari K and Bernardi G. CpG doublets, CpG islands and Alu repeats in long human DNA sequences from different isochore families. Gene 1998; 224(1-2): 123–127.

Jjingo D, Huda A, Gundapuneni M, Mariño-Ramírez L, Jordan IK. Effect of the transposable element environment of human genes on gene length and expression. Genome Biology and Evolution 2011; 3: 259–271.

Khomutov GB. Possible role of iron ions in changes in composition of DNA complexes and their magnetic properties in cell cycle processes. Biofizika 2004; 49(1): 140–144.

Kim TM, Jung YC, Rhyu MG. Alu and L1 retroelements are correlated with the tissue extent and peak rate of gene expression, respectively. Journal of Korean Medical Science 2004; 19(6): 783–792.

Kiperman S. The scientific drama of professor Blumenfeld. ISRAGEO, 2015. Retrieved from (accessed 14 September 2018).

Kurnikov IV, Tong GS, Madrid M, Beratan DN. Hole size and energetics in double helical DNA: competition between quantum delocalization and solvation localization. The Journal of Physical Chemistry B 2002; 106(1): 7-10.

Kwon YW, Lee CH, Do ED, Choi DH, Jin JI, Kang JS, Koh EK. Hydration Effect on the Intrinsic Magnetism of Natural Deoxyribonucleic Acid as Studied by EMR Spectroscopy and SQUID Measurements. Bulletin of the Korean Chemical Society 2008; 29(6): 1233–1242.

Kwon YW, Lee CH, Choi DH, Jin JI. Materials science of DNA. Journal of Materials Chemistry 2009; 19(10): 1353–1380.

Kwon YW, Jin JI, Oh DK, Lee CH. Charge Transport in the DNA fiber: Effects of Magnetic Field and Microwave Irradiation. New Physics 2012; 62(9): 1035–1037.

Kwon YW, Choi DH, Jin JI, Lee CH, Koh EK, Grote JG. Comparison of magnetic properties of DNA-cetyltrimethyl ammonium complex with those of natural DNA. Science China. Chemistry 2012; 55(5): 814–821.

Lander ES. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 2001; 409(6822): 860–921.

Lee CH, Kwon YW, Jin JI. Electrical and magnetic properties of DNA. Materials Science of DNA 2011; pp: 121–162.

Lipkind M. Alexander Gurwitsch and the Concept of the Biological Field, Part 1. 21st Century Science & Technology 1998; 11: 36–51.

Lipkind M. Alexander Gurwitsch and the Concept of the Biological Field, Part 2. 21st Century Science & Technology 1998; 11: 34–53.

Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC. Role of transposable elements in heterochromatin and epigenetic control. Nature 2004; 430(6998): 471-476.

Li X, Feng H, Zhang J, Sun L, Zhu P. Analysis of chromatin fibers in Hela cells with electron tomography. Biophysics Reports 2015; 1: 51–60.

Lobachev KS, Stenger JE, Kozyreva OG, Jurka J, Gordenin DA, Resnick MA. Inverted Alu repeats unstable in yeast are excluded from the human genome. The EMBO Journal 2000; 19(14): 3822–3830.

Lown JW, Hanstock CC. High Field 1H-NMR Analysis of the 1:1 Intercalation Complex of the Antitumor Agent Mitoxantrone and the DNA Duplex [d(CpGpCpG)]2. Journal of Biomolecular Structure & Dynamics 1985; 2(6): 1097–1106.

Maeshima K, Imai R, Tamura S, & Nozaki T. Chromatin as dynamic 10-nm fibers. Chromosoma 2014; 123(3): 225–237.

Maeshima K, Rogge R, Tamura S, Joti Y, Hikima T, Szerlong H, Krause C, Herman J, Seidel E, DeLuca J, Ishikawa T. Nucleosomal arrays self‐assemble into supramolecular globular structures lacking 30‐nm fibers. The EMBO journal 2016; 35(10): 1115-1132.

McClintock B. Chromosome organization and genic expression. Cold Spring Harbor Symposia on Quantitative Biology 1951; 16: 13–47.

Mcclintock B. Controlling elements and the gene. Cold Spring Harbor Symposia on Quantitative Biology 1956; 21, 197–216.

Métivier R, Penot G, Hübner MR, Reid G, Brand H, Kos M, Gannon F. Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 2003; 115(6): 751–763.

Meyl K. DNA and Cell Resonance (Kindle). Villingen-Schwenningen, Germany: INDEL GMBH, 2011.

Meyl K. DNA and cell resonance: magnetic waves enable cell communication. DNA and Cell Biology 2012; 31(4): 422–426.

Miller RA and Webb B. Embronic Holography: An Application of the Holographic Concept of Reality. DNA Decipher Journal 2012; 2(2). Available at: (accessed 11 September 2018).

Miller RA, Webb B, Dickson D. A holographic concept of reality. Psychoenergetic Systems, Gordon and Breach Science Pub Ltd 1975; 1: 55–62.

Montagnier L, Aissa J, Del Giudice E, Lavallee C, Tedeschi A, Vitiello G. DNA waves and water. Journal of Physics. Conference Series, IOP Publishing 2011; 306(1): 012007.

Mouse Genome Sequencing Consortium, Waterston RH, Lindblad-Toh K. Initial sequencing and comparative analysis of the mouse genome. Nature 2002; 420(6915): 520-562.

Muller A, Hotz G, Zimmer KG. Electron spin resonances in bacteriophage: alive, dead, and irradiated. Biochem. Biophys. Research Communs. 1961; 4. Nuclear Research Center, Karlsruhe, Ger. Available at:

Myakishev M, Polesskaya O, Kulichkova V, Baranova A, Gause L, Konstantinova I. PCR-based detection of Pol III-transcribed transposons and its application to the rodent model of ultraviolet response. Cell Stress & Chaperones 2008; 13(1): 111–116.

Myakishev-Rempel M. Acute light exposure (670 nm) activates genes in mouse skin but does not significantly alter cancer growth in long term. Presented at the American Society for Photobiology, The science behind LLLT, University of Rochester, Rochester, NY, 2009.

Myakishev-Rempel M. DNA Resonance. In Teslatech extraordinary technology conference, Albuquerque, NM, USA, 10 August 2018.

Myakishev-Rempel M, Stadler I, Polesskaya O, Motiwala AS, Nardia FB, Mintz B, Baranova A, Zavislan J, Lanzafame RJ. Red Light Modulates Ultraviolet-Induced Gene Expression in the Epidermis of Hairless Mice. Photomedicine and laser surgery 2015; 33(10): 498-503.

Ou HD, Phan S, Deerinck TJ, Thor A, Ellisman MH, O’Shea CC. ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science 2017; 357(6349).

Peters R, King CY, Ukiyama E, Falsafi S, Donahoe PK, Weiss MA. An SRY mutation causing human sex reversal resolves a general mechanism of structure-specific DNA recognition: application to the four-way DNA junction. Biochemistry 1995; 34(14): 4569–4576.

Pliss A, Malyavantham KS, Bhattacharya S, Berezney R. Chromatin dynamics in living cells: identification of oscillatory motion. Journal of Cellular Physiology 2013; 228(3): 609–616.

Polesskaya O, Guschin V, Kondratev N, Garanina I, Nazarenko O, Zyryanova N, Tovmash A, Mara A, Shapiro T, Erdyneeva E, Zhao Y. On possible role of DNA electrodynamics in chromatin regulation. Progress in biophysics and molecular biology 2018; 134: 50–54.

Polesskaya O, Kananykhina E, Roy-Engel AM, Nazarenko O, Kulemzina I, Baranova A, Vassetsky Y, Myakishev-Rempel M. The role of Alu-derived RNAs in Alzheimer’s and other neurodegenerative conditions. Medical hypotheses 2018; 115: 29-34.

Protoplasma (1932) Die mitogenetische Strahlung. 16(1): 164–167.

Pullman B and Pullman A. Quantum biochemistry. New York: Interscience Publishers, 1963.

Quickenden TI, Hee SS. Weak luminescence from the yeast Saccharomyces cerevisiae and the existence of mitogenetic radiation. Biochemical and biophysical research communications 1974; 60(2): 764-770.

Rossi C, Foletti A, Magnani A, Lamponi S. New perspectives in cell communication: Bioelectromagnetic interactions. Seminars in Cancer biology 2011; 21(3): 207-214.

Sahu S, Ghosh S, Hirata K, Fujita D, Bandyopadhyay A. Multi-level memory-switching properties of a single brain microtubule. Applied Physics Letters 2013; 102(12): 123701.

Sankarampadi Aravamudhan. QM Chemical Shift Calculations to Infer on the Long-Range Aromatic Ring Current-Induced Field Contributions. Journal of Materials Science and Engineering A. 2015; 5(5-6): 181-196.

Savelyev I, Zyryanova N, Polesskaya O, Myakishev-Rempel M. Microtubular Transmission in Millimeter Wave Therapy. Vixra, 2018; 1805.0104.

Scheffer MP, Eltsov M, Frangakis AS. Evidence for short-range helical order in the 30-nm chromatin fibers of erythrocyte nuclei. Proceedings of the National Academy of Sciences 2011; 108(41): 16992-16997.

Scholkmann F, Fels D, Cifra M. Non-chemical and non-contact cell-to-cell communication: a short review. American journal of translational research 2013; 5(6):586-593.

Scott AC. Soliton oscillations in DNA. Physical Review A 1985; 31(5): 3518.

Shnoll SE. Lev Aleksandrovich Blumenfeld (23.XI.1921 - 3.IX.2002). Biophysics 2003; 48(6): 966–976.

Shulman RG, Walsh Jr WM, Williams HJ, Wright JP. Ferromagnetic resonance in DNA samples. Biochemical and Biophysical Research Communications 1961; 5(1): 52-56.

Snipes W and Gordy W. Electron Paramagnetic Resonance of Vanadyl Ions Trapped in RNA and DNA. The Journal of Chemical Physics 1964; 41(11): 3661-3662.

Trushin MV. Distant non-chemical communication in various biological systems. Rivista Di Biologia 2004; 97(3): 409–442.

Van Winkle DH, Chatterjee A, Link R, Rill RL. Magnetic-field alignment of cholesteric liquid-crystalline DNA. Physical Review E 1997; 55(4): 4354-4359.

Vavřinská A, Zelinka J, Šebera J, Sychrovský V, Fiala R, Boelens R, Sklenář V, Trantírek L. Impact of nucleic acid self-alignment in a strong magnetic field on the interpretation of indirect spin–spin interactions. Journal of biomolecular NMR 2016; 64(1): 53-62.

Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD. The sequence of the human genome. science 2001; 291(5507): 1304-1351.

Volkov SN, Kosevich AM. Conformation oscillations of DNA. Molekuliarnaia biologiia 1987; 21(3): 797-806.

Volodyaev I, Beloussov LV. Revisiting the mitogenetic effect of ultra-weak photon emission. Frontiers in physiology 2015; 6: 241.

WALSH jun. WM, Shulman RG, Heidenreich RD (1961) Ferromagnetic Inclusions in Nucleic Acid Samples. Nature 192. Nature Publishing Group: 1041.

Webb GA. Nuclear Magnetic Resonance. Royal Society of Chemistry, 2000.

Widom J and Klug A. Structure of the 3000Å chromatin filament: X-ray diffraction from oriented samples. Cell 1985; 43(1): 207-213.

Wikipedia contributors. Aromatic ring current. Wikipedia, 2018a. . Available at: (accessed 13 September 2018).

Wikipedia contributors. Telomere. Wikipedia, 2018b. (accessed 14 September 2018).

Wraight CA. Chance and design--proton transfer in water, channels and bioenergetic proteins. Biochimica et biophysica acta 2006; 1757(8): 886–912.

Wu C, McGeehan JE, Travers A. A metastable structure for the compact 30-nm chromatin fibre. FEBS letters 2016; 590(7): 935–942.

Xu J, Yang F, Han D, Xu S. Wireless Communication in Biosystems, 2017; August 8. arXiv []. . Available at:

Zhang L, Hou Y, Li Z, Ji X, Wang Z, Wang H, Tian X, Yu F, Yang Z, Pi L, Mitchison TJ. 27 T ultra-high static magnetic field changes orientation and morphology of mitotic spindles in human cells. Elife 2017; 6: e22911.

Supporting Agencies

| NeuroScience + QuantumPhysics> NeuroQuantology :: Copyright 2001-2019