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Abstract  

As we can see there has been an increasing demand for a more and more scalable algorithm, owing 
to the increase in the complexity of our day to problems and situations. In this paper, we basically 
compare the inferencing algorithm in two circumstances. One is not much complex while the other 
one is complex. Till now various researchers proposed mc-sat with a great future scope for being 
better than others but no practical and explained proof was there. Gibbs sampling was considered as 
the best among all the inferencing algorithms but we observed that MC-SAT, an inference algorithm 
that combines ideas from Markov chain Monte Carlo(MCMC) and satisfiability is much better as the 
situation gets complicated. MC-SAT is basically based on Markov logic, which defines Markov 
networks using weighted clauses in first-order logic. MC-SAT improves the scalability of the 
unbbayes software and also Multi Entity Bayesian Network(MEBN) by reducing the time complexity 
and space complexity. We successfully implemented the algorithms and compared them for the 
examples we provide.  
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1. Introduction 

Inferencing algorithms are based on 

statistical inference that is they work on 

previous stats and knowledge of the 

problem set which helps us reduce our 

sample size by reducing the original sample 

set to most probable set thus data analysts 

and scientist are following approach from 

the algorithms for processing data to the 

amount of information they process.  

The process of inferring conclusion from 

multiple observations is called inductive 

reasoning. The resultmay be correct or 

incorrect, or may be correct in certain 

situations.  

Two possible definitions of "inference" are: 

1. A conclusion reached on the basis of 

evidence and reasoning. 

2. The process of reaching such a conclusion. 

 

1.1 Inference in Bayesian Networks 

Inference over a Bayesian network can come in  

two forms. 

The first is simply evaluating the joint 

probability of a particular assignment of 

values for each variable (or a subset) in the 

network. For this, we already have a 

factorized form of the joint distribution, so 

we simply evaluate that product using the 

provided conditional probabilities. If we 

only care about a subset of variables, we 

will need to marginalize out the ones we 

are not interested in. In many cases, this 

mayresult in underflow, so it is common to 

take the logarithm of that product, which is 

equivalent to adding up the individual 

logarithms of each term in the product. 

The second, more interesting inference 

task, is to find P(x|e) as in Eq. 1, or, to find 

the probability of someassignment of a 

subset of the variables (x) given 

assignments of other variables (our 

evidence, e). In the above example, an 

example of this could be to find P 

(Sprinkler, WetGrass | Cloudy), where 

{Sprinkler, WetGrass} is our x, and {Cloudy} 
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is our e. In order to calculate this, we use 

the fact that P(x|e) = P (x, e) / P(e) = αP (x, 

e), where α is a normalization constant that 

we will calculate at the end such that P(x|e) 

+ P (¬x | e) = 1. In order to calculate P (x, e), 

we must marginalize the joint probability 

distribution over the variables that do not 

appear in x or e, which we will denote as Y. 

𝑃 𝑥 𝑒 = 𝛼  𝑃(𝑥, 𝑒, 𝑌)

∀𝑦∈𝑌

 

      

     

 (1) 

For the given example, we can calculate P 

(Sprinkler, WetGrass | Cloudy) as 

follows:We would calculate P (¬x | e) in the 

same fashion, just setting the value of the 

variables in x to false instead of true. Once 

both P (x | e) and P (¬x | e) are calculated, 

we can solve for α, which equals 1 /(P (x | 

e) + P (¬x | e)). 

Note that in larger networks, Y will most 

likely be quite large, since most inference 

tasks will only directly use a small subset of 

the variables. In scenarios like these, exact 

inference as shown above is very complex 

to calculate, so methods must be used to 

reduce the amount of computation. One 

moreefficient method of exact inference is 

through variable elimination, which takes 

advantage of the factthat each factor only 

involves a small number of variables. This 

means that the summations can be 

rearranged such that only factors involving 

a given variable are used in the 

marginalization of that variable. 

Alternatively, many networks are too large 

even for this method, so approximate 

inference methods such as MCMC are 

instead used; these provide probability 

estimations that require significantly less 

computation than exact inference methods. 

1.2 Scalability 

 

Scalability is the ability of a program to 

scale. For example, if you can do something 

on a small database (say less than 1000 

records), a program that is highly scalable 

would work well on a small set as well as 

working well on a large set (say millions, or 

billions of records). 

Like gap said, it would have a linear growth 

of resource requirements. Look up Big-O 

notation for more details about how 

programs can require more computation 

the larger the data input gets. Something 

parabolic like Big-O(x^2) is far less efficient 

with large x inputs than something linear 

like Big-O(x). 

1.3 MEBN  

 

Probabilistic approach to solve uncertainty 

is the most powerful conceptual tool that 

we have yet developed to understand and 

manage uncertainty. A Bayesian network, 

Bayes network, belief network, Bayesian) 

model or probabilistic directed acyclic 

graphical model is graphical probabilistic 

model in which the dependency graph is an 

acyclic directed graph.  

Multi-Entity Bayesian Networks (Laskey, 

2008) is a language for representing first 

order probabilistic knowledge base. MEBN 

integrate first order logic with Bayesian 

probability. MEBN logic expresses 

probabilistic knowledge as a collection of 

MEBN fragments (MFrags) organized into 

MEBN Theories (MTheories). An MFrag 

represents a conditional probability 

distribution of the instances of its resident 

random variables given the values of 

instances of their parents in the Fragment 

graphs and given the context constraints. A 

collection of MFrags represents a joint 

probability distribution over an unbounded, 

possibly infinite number of instances of its 

random variables. The joint distribution is 

specified by means of the local distributions 

together with the conditional 

independence relationships implied by the 

fragment graphs. Context terms are used to 

specify constraints under which the local 
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distributions apply. MEBN combines First 

order logic with inferential power of BN, 

with this combination MEBN is able to 

provide a consistent treatment of 

uncertainty.  

In traditional BN reasoning was about a 

fixed no. of attributes whereas a MEBN can 

deal with a varying number of attributes. 

Also, it provides a means of defining 

probability over an unbounded and varying 

no. of interrelated hypothesis using a 

syntax, set of models construction and 

interface process and semantics  

Example-If all we have is BNs, and there are 

M months of data with N variables per 

month, we must build a BN with MxN 

nodes, and fill in identical arcs and local 

probability distributions at each time step.  

With MEBNs, we can write a single BN Frag 

relating the variables at time t with the 

variables at time t+1 and say repeat for all 

t's. 

Multi-Entity Bayesian Networks (MEBN), a 

first-order language for specifying 

probabilistic knowledge bases as 

parameterized fragments of Bayesian 

networks.  

This parameterization helps to add 

additional information and values, thus 

making our model more accurate and 

efficient to handle uncertainty.  

We begin the paper by first explaining all 

the required knowledge for the algorithms. 

Then we provided all the algorithm used in 

MEBN and compared it with one of the 

MLN algorithm which is MC-SAT and 

provided the result for showing which one 

more scalable under different 

circumstances. Then at last we have our 

future work and conclusion for the research 

work.  

1.4 Markov-logic networks 

 

A first-order KB can be seen as a set of hard 

constraints on the set of possible worlds: if 

a world violates even one formula, it has 

zero probability. The basic idea in MLNs is 

to soften these constraints: when a world 

violates one formula in the KB it is less 

probable, but not impossible. The fewer 

formulas a world violates, the more 

probable it is. Each formula has an 

associated weight that reflects how strong a 

constraint it is: the higher the weight, the 

greater the difference in log probability 

between a world that satisfies the formula 

and one that does not, other things being 

equal.  

1.5 Markov chain Monte Carlo   

 

Markov chain Monte Carlo (MCMC) 

methods comprise a class of algorithms for 

sampling from a probability distribution. By 

constructing a Markov chain that has the 

desired distribution as its equilibrium 

distribution, one can obtain a sample of the 

desired distribution by observing the chain 

after a number of steps. The more steps 

there are, the more closely the distribution 

of the sample matches the actual desired 

distribution. 

2. Evolution of Inference algorithms  

 

First in 1962 the likelihood function has 

proved to be such a powerful tool for 

inference that it has been extended and 

generalized to semi-parametric models and 

non-parametric models, and various pseudo 

likelihood functions have been proposed for 

more complex models then came the Lazy 

DpLL in 1962, it formed the basis for 

modern SAT. After this, in 1966, MCMC, it is 

basically implemented for MLN (Markov 

logic networks). A simple approach to 

combining first-order logic and probabilistic 

graphical models in a single representation. 

A Markov logic network (MLN) is a first-

order knowledge base with a weight 

attached to each formula, then before 1980 

Junction tree (also known as 'Clique Tree') is 

a method used in machine learning to 
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extract marginalization in general graphs. 

After this Backward Sampling in 1980, this 

forward–backward algorithm is an 

inference algorithm for hidden Markov 

models which computes the posterior 

marginal of all hidden state variables given 

a sequence of observations/emissions then 

BELIEF PROPAGATION in 1982 it was first 

proposed by Judea Pearl in 1982, who 

formulated it as an exact inference 

algorithm on trees, which was later 

extended to polytrees. While it is not exact 

on general graphs anymore, it has been 

shown to be a useful approximate 

algorithm. Then came Gibbs 1984, in 

statistics, Gibbs sampling or a Gibbs 

sampler is a Markov chain Monte Carlo 

(MCMC) algorithm for obtaining a sequence 

of observations which are approximated 

from a specified multivariate probability 

distribution, when direct sampling is 

difficult. It is designed only for  Bayesian 

network as compared to the MCMC which 

is for MLN only then Backward Sampling 

with  children in1985 then SampleSearch in 

between (1985-1995) then Sample Search 

with Choco solver in  between (1990-2000) 

then SampleSearch with Back jumping in 

between (1990-2000) then Backward  

Sampling with priors- 1987 Backward 

SampleSearch in 1988 the Ace in1990 

Blocked Gibbs sampler - 1992- A blocked 

Gibbs sampler groups two or more 

variables together and samples from their 

joint  distribution conditioned on all other 

variables, rather than sampling from each 

one individually. For example, in a hidden 

Markov model, a blocked Gibbs sampler 

might sample from all the latent variables 

making up the Markov chain in one go, 

using the forward-backward algorithm. 

Collapsed Gibbs sampler in1994 is a 

collapsed Gibbs sampler integrates out 

(marginalizes over) one or more variables 

when sampling for some other variable 

then Backward SampleSearch with back 

jumping in 1994 Gaussian BP in between 

(2000-2006) modified. In this contribution, 

we develop a solution based upon Gaussian 

belief propagation (GaBP) that does not 

involve direct matrix inversion. BP is for 

direct problems which have small sample 

space while Gaussian BP is for larger sample 

space then sample sat in 2004 then SAT in 

2006(concept introduced-1972) it is very 

important because it is NP-Complete. To 

understand what this means you need a 

clear notion of Complexity classes. Often 

however this is not feasible.  Where it is 

feasible is, when no other fast algorithm is 

known, such as the puzzle you mention. In 

this  

case you do not have to develop an 

algorithm for the puzzle, but can use any of 

the highly optimized SAT-Solvers out there 

and you will end up with a reasonable fast 

algorithm for your puzzle then Mc-sat in 

2006 it basically combines MCMC and sat 

algorithm in order to form a better and 

faster algorithm for complex problems in 

MLN. It is better than Gibbs, if the sample 

space for the problem is very large and lazy-

mc-sat is an extension of the alchemy 

system 2007. It is much faster than Sat 

Algorithm. 

 

3. Algorithms comparison  

 

The comparison of existing algorithms is given in Table 1. 

Table 1. Comparison of Existing Algorithms 

S. No Algorithm Year Principle Domain Base 

 

1 Likelihood  1962 Likelihood MLN, MEBN, FOL 
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Inferencing Ratio BN  

 

2 Gibbs 1984 Randomized 

Gibbs 

Sampler 

Markov Logic 

Networks, 

Bayesian 

Networks  

 

FOL 

3 Backward 

Sampling 

1987  Posterior 

marginals, 

Dynamic 

Programming  

 

BN, MLN Numeric 

4 Sample 

Search 

1985-1995 Mean 

Inferencing 

 

BN, MLN Numeric 

5 Belief 

Propagation 

1982 Sum-Product 

Message 

Passing 

 

MLN, BN Numeric 

6 Gausian 2000-2006 Guassian 

Process  

 

MLN, BN Numeric 

7 MC-SAT 2006 Combination 

of MCMC and 

Satisfiability 

 

MLN, MEBN FOL 

 

3.1 Gibbs Sampling  

 

Gibbs also use MCMC method. It not only 

checks the recent results but all the earlier 

cases and outcomes of the problem.  

 

We select one random variable at a time. 

Then check it for all cases and reassemble it 

then take another variable and do the same 

iteration until all the variables are checked 

once. In likelihood and similar other 

algorithm all the samples generated 

(reassembled variables) they are 

independent of their samples. Samples are 

those which are created after reassembling. 

Basically every iteration is treated as a 

sample until we get the desired result.  

This is dependent sampling algorithm which 

generates by past experience. Gibbs 

sampling is commonly used as a means of 

statistical inference, especially Bayesian 

inference. It is a randomized algorithm (i.e. 

an algorithm that makes use of random 

numbers), and is an alternative to 

deterministic algorithms for statistical 

inference such as the expectation-

maximization algorithm (EM).  

As with other MCMC algorithms, Gibbs 

sampling generates a Markov chain of 

samples, each of which is correlated with 

nearby samples. As a result, care must be 

taken if independent samples are desired. 

Generally, samples from the beginning of 

the chain (the burn-in period) may not 

accurately represent the desired 

distribution and are usually discarded. It 

has been shown, however, that using a 

longer chain instead (e.g. a chain that is n 

times as long as the initially considered  
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chain using a thinning factor of n) leads to  

better estimates of the true posterior. Thus, 

thinning should only be applied when time 

or computer memory are restricted. 

ALGORITHM  

We have probabilistic approach for 3 instances(assumed)-  

P (Q1, Q2, Q3)  

1) Finding initial conditional probability for given instances.  

2) For t1: T (for t a number from 1 to T)  

Q1
t ~ P (Q1/Q2

t-1, Q3
t-1)  

Q2
t ~ P (Q2/Q1

t, Q3
t-1)  

Q3
t ~ P (Q3/Q1

t, Q2
t)  

3) Step 2 repeated until constant value acquired.   

As we can see from the algorithm that first we find conditional probability of each instances and then 

keep on repeating it until all the instances have similar value which will be done after 1000 of 

iterations. Hence we don’t reject any parameters and every variable will be accessed. But we clearly 

see that as the complexity or no. of instances to be traversed increases he Gibbs will take more time 

and become quite complex.  

3.2 LIKELIHOOD  

In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of a 

statistical model, given observations. MLE attempts to find the parameter values that maximize the 

likelihood function, given the observations. The resulting estimate is called a maximum likelihood 

estimate, which is also abbreviated as MLE.  

An example, suppose that we are interested in the heights of adult female penguins, but are unable 

to measure the height of every penguin in a population (due to cost or time constraints). Assuming 

that the heights are normally distributed with some unknown mean and variance, the mean and 

variance can be estimated with MLE while only knowing the heights of some sample of the overall 

population.  MLE would accomplish that by taking the mean and variance as parameters and finding 

particular parametric values that make the observed results the most probable given the normal 

model.  

We start with a given parametric model, f (y; θ), the probability density function for a random 

variable Y. At least initially we assume that y is a vector of n components y1, ..., yn, yi∈R, and θ ∈". In 

regular statistical models, " is very often taken to be Rd or a subset of Rd. The likelihood function for 

this parametric model is  

L (θ; y) = c(y)f (y; θ), (1) 

viewed as a function of θ, for fixed y. While some authors define the likelihood function without the 

arbitrary function c(y), this definition shows explicitly that the value of the likelihood function is only 

meaningful in relative terms. It is usually more convenient to work with the log-likelihood function  

(θ; y) = a(y) + log f (y; θ); 

Y = (Y1, ..., Yn) are independent and identically distributed normal random variables, with mean µ 

and variance σ 2, then 
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(θ; y) = −n 2 log σ 2 − 1 2σ 2! (yi − µ) 2, 

where θ = (µ, σ 2), " = R × R+ 

(θ; y) = −n 2 log σ 2 − 1 2σ 2!" yi − xTi β #2, 

where θ = (β, σ 2). 

Functional invariance  

The maximum likelihood estimator selects the parameter value which gives the observed data the 

largest possible probability (or probability density, in the continuous case). If the parameter consists 

of a number of components, then we define their separate maximum likelihood estimators, as the 

corresponding component of the MLE of the complete parameter. Consistent with this, if is the MLE 

for, and if is any transformation of, then the MLE for is by definition. 

It maximizes the so-called profile likelihood: The MLE is also invariant with respect to certain 

transformations of the data. If where is one to one and does not depend on the parameters to be 

estimated, then the density functions satisfy and hence the likelihood functions for and differ only by 

a factor that does not depend on the model parameters. For example, the MLE parameters of the log 

normal distribution are the same as those of the normal distribution fitted to the logarithm of the 

data.  

 

Higher-order properties  

As noted above, the maximum likelihood estimator is √n -consistent and asymptotically efficient, 

meaning that it reaches the Cramér–Rao bound: where is the Fisher information matrix: In particular, 

it means that the bias of the maximum likelihood estimator is equal to zero up to the order 1⁄√n. 

However, when we consider the higher-order terms in the expansion of the distribution of this 

estimator, it turns out that θmle has bias of order 1⁄n. This bias is equal to (component wise) where 

denotes the (j, k)-thcomponent of the inverse Fisher information matrix, and Using these formulae it 

is possible to estimate the second-order bias of the maximum likelihood estimator, and correct for 

that bias by subtracting it:  

This estimator is unbiased up to the terms of order 1⁄n, and is called the bias-corrected maxim 

likelihood estimator. This bias-corrected estimator is second-order efficient (at least within the 

curved exponential family), meaning that it has minimal mean squared error among all second-order 

bias corrected estimators, up to the terms of the order 1⁄n ². It is possible to continue this process, 

that is to derive the third-order bias-correction term, and so on. However, as was shown by Kano 

(1996), the maximum likelihood estimator is not third-order efficient.  

Relation to Bayesian inference  

A maximum likelihood estimator coincides with the most probable Bayesian estimator given a 

uniform prior distribution on the parameters. Indeed, the maximum a posteriori estimate is the 

parameter θ that maximizes the probability of θ given the data, given by Bayes' theorem: where is 

the prior distribution for the parameter θ and where is the probability of the data averaged over all 

parameters. Since the denominator is independent of θ, the Bayesian estimator is obtained by 

maximizing with respect to θ. If we further assume that the prior is a uniform distribution, the 

Bayesian estimator is obtained by maximizing the likelihood function. Thus the Bayesian estimator 

coincides with the maximum likelihood estimator for a uniform prior distribution.  
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3.3 MC-SAT   

MC-SAT, an MCMC algorithm that is able to handle deterministic and near-deterministic 

dependencies by using Wei et al.’s. SampleSAT as a subroutine to efficiently jump between isolated 

or near-isolated regions of non-zero probability, while preserving detailed balance.  

MC-SAT accepts problems defined in Markov logic, a very general language that has both Markov 

networks and finite first-order logic as special cases (Richardson & Domingo’s 2006). MC-SAT deals 

with of both probabilistic and deterministic information. For example, entity resolution (the problem 

of determining which observations correspond to the same object) involves both probabilistic 

inferences (e.g., observations with similar properties are more likely to be the same object)  

MC-SAT applies slice sampling to Markov logic, using SampleSAT to sample a new state given the 

auxiliary variables.  

_______________________________________________ 

Algorithm 1 MC-SAT (clauses, weights, num samples)  

x(0) ← Satisfy (hard clauses)  

for i ← 1 to num samples do  

M ← ∅ 

for all ck∈clauses satisfied by x(i−1) do with probability 1 − e−wkadd ck to M  

end for  

Sample x(i) ∼USAT(M)  

end for  

______________________________________________  

MC-Sat works by applying slice sampling to Markov logic using Sample SAT in order to sample a given 

state based on the previous results. For each given ground clause we define a potential function 

ckcorresponds to the φ k (x) = exp (w k f k (x)). Grounding is a method of replacing variable by a 

constant i.e. We define the ground clause as a base condition for inferencing the next state. Assume 

for the moment that all weights are non-negative. On the ithiteration of MC-SAT, if c k is not satisfied 

by the current state x (i), u k is drawn uniformly from *0, 1+; therefore, u k ≤ 1 and u k ≤ e w k, and 

there is no requirement that it be satisfied in the next state. If c k is satisfied, u k is drawn uniformly 

from [0, e w k], and with probability 1−e −w k it will be greater than 1, in which case the next state 

must satisfy c k. Thus, sampling all the auxiliary variables determines a random subset M of the 

currently satisfied clauses that must also be satisfied in the next state. All Hard clause needs to be 

satisfied initially, so for a given state x (0) we satisfy all the hard clauses. We then take as the next 

state a uniform sample from the set of states SAT (M) that satisfy M. (Notice that SAT (M) is never 

empty, because it always contains at least the current state.) The initial state is found by applying a 

satisfiability solver to the set of all hard clauses in the network (i.e., all clauses with infinite weight). If 

this set is unsatisfiable, the output of MC-SAT is undefined.  

3.4 Gaussian Inference  

Gaussian Inference works on the basis of Gaussian Process. Supports graphical models, such as 

Bayesian networks and Markov random fields. Gaussian process (GP) regression is a fully probabilistic 

method for performing non-linear regression. In a Bayesian framework, regression models can be 

made robust by using heavy-tailed distributions instead of using normal distribution for modelling  

noise. This work focuses on estimation of parameters for robust GP regression. In literature, these 

are learned by maximizing the approximate marginal likelihood of data. However, gradient-based 
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optimization algorithms which are used for this purpose can be unstable or may require tuning. A 

Gaussian process can be thought of as a Gaussian distribution over functions (thinking of functions as 

infinitely long vectors containing the value of the function at every input). Formally let the input 

space X and f: X → R a function from the input space to the reals, then we say f is a Gaussian process 

if for any vector of inputs x = [x1, x2, . . ., xn] ^T such that xi ∈X for all i, the vector of output f(x) = 

[f(x1), f(x2), . . ., f(xn)] ^T is Gaussian distributed. Belief Propagation may be described as a special case 

of Gaussian Inference.  

One drawback of the Gaussian Process is that it scales very badly with the number of observations N.  

Solving for the coefficients α defining the mean function requires O (N^3) computations  

3.5 Belief Propagation:  

Belief propagation, also known as sum-product message passing, is a message-passing algorithm for 

performing inference on graphical models, such as Bayesian networks and Markov random fields. It 

calculates the marginal distribution for each unobserved node, conditional on any observed nodes. 

Belief propagation is commonly used in artificial intelligence and information theory and has 

demonstrated empirical success in numerous applications including low-density parity-check codes, 

turbo codes, free energy approximation, and satisfiability. 

The algorithm was first proposed by Judea Pearlin 1982, who formulated it as an exact inference 

algorithm on trees, which was later extended to polytrees. While it is not exact on general graphs 

anymore, it has been shown to be a useful approximate algorithm. 

If X={Xi} is a set of discrete random variables with a jointmass function p, the marginal distribution of 

a single Xi is simply the summation of p over all other variables: However, this quickly becomes 

computationally prohibitive: if there are 100 binary variables, then one needs to sum over 299 ≈ 6.338 

× 1029 possible values. By exploiting the polytrees structure, belief propagation allows the marginal to 

be computed much more efficiently. 

Algorithm:  

1. initialize BP messages; 

2. initialize U =∅; 

3. for t=1,2…. N: 

4. run BP until convergence; 

5.     choose i ∈ V\U; 

6.     compute the BP marginal vi (xi) 

7.     choose 𝒙𝒊
∗ distributed according to vi; 

8.     fix xi = 𝒙𝒊
∗ and set U<-U ∪  𝒊 ; 

9.     add a factor I (xi =𝒙𝒊
∗) to the graphical model; 

10. end  

11. return x*. 

Observations  

a) Graph with smaller number of dependencies.  

We have curated a sample example with defined declarations and evidence and tried to test run 

the same using different algorithms.  The Comparison of existing algorithms based on time as 
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given in Table 1. 

 

Declarations:  

type Professor;  

type Student;  

type Course;  

type Grade;  

guaranteed Grade None, A, B, C, D, F;   

type DifficultyLevel;  

guaranteed DifficultyLevel Easy, Hard;  

type IntelligenceLevel;  

guaranteed IntelligenceLevel Weak,   

Average, Smart;  

random Boolean teaches (Professor, Course);  

random Boolean advises (Professor, Student);  

random Boolean takes (Student, Course);  

random Boolean likes (Professor, Professor);  

random DifficultyLevel difficulty(Course); 

random IntelligenceLevel intelligence(Student);

random Grade (Student, Course);  

random Boolean teacherOfLikesAdvisorOf 

(Course, Student);  

 

                Fig. 1 Example (small no of    

dependencies) 

 

 

PREDICATE LOGIC:  

// everybody likes him- or herself likes(p,p).  

 

EVIDENCE:  

 

takes (John, Stat10) = True  

takes (John, CS106) = True  

takes (Mary, Phil80) = True 

takes (Mary, CS106) = True  

takes (Fred, Stat10) = True  

takes (Fred, CS106) = True  

teaches (Smith, CS106) = True  

teaches (Jones, CS106) = True  

teaches (Moriarty, Phil80) = True  

teaches (Jones, Stat10) = True  

advises (Moriarty, John) = True  

grade (John, Stat10) = C  

grade (Mary, Phil80) = A 

grade (Fred, Stat10) = C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Comparison on basis of time taken 
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S. No Inferencing Algorithm Time Taken (Sec) 

1 GIBBS 50.81 

2 Backward Sampling with 

Children 

50.82 

3 Backward Sampling 65.18 

4 Sample Score 75.00 

                     5 Sample Search 85.78 

                     6 Likelihood 85.93 

                     7 Sample Search with backjumping 88.20 

                    8 MC-SAT 129.00 

9 Variable Elimination 230.00 

                   10 Belief propagation with junction 

tree 

301.00 

                   11 Gaussian 319.00 

 
2(a): GIBBS                       2(b): Backward Sampling with Children 
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2(c): Backward Sampling                                            2(d): Sample Search 

 

 
2(e): Likelihood   2(f): Sample Search with Back jumping 

 
2(g): MC-SAT    2(h): Variable Elimination 
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    2(i):   

    2(j) 

 

Fig 2(a)-2(j): Graphical Representation for 

Time taken by inference Algorithms 

 

 

b) Graph with larger number of 

dependencies.  

 

Declarations:  

type Professor;  

type Student;  

type Course;  

type project  

guaranteed Project Completes, Not   

Completes  

type assignments  

guaranteed Project Completes, Not   

Completes  

type class response  

guaranteed Class Response Good,  

Bad  

type practicals  

type extraactivities  

type management  

type homework  

type looks  

type Grade;  
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guaranteed Grade None, A, B, C, D,   

F;  

type DifficultyLevel;  

guaranteed DifficultyLevel Easy,   

Hard;  

type IntelligenceLevel;  

guaranteed IntelligenceLevel Weak, Average, Smart;  

random Boolean project(s)      Fig 3: Example (Large no of dependencies) 

random Boolean assignments (s, c)  

random Boolean classresponse(s)  

random Boolean practicals (s, c)  

random extraactivities(s)  

random Boolean management(s)  

random Boolean homework (s, c)  

random looks(s)  

random Boolean teaches (Professor, Course);  

random Boolean advises (Professor, Student);  

random Boolean takes (Student, Course);  

random Boolean likes (Professor, Professor);  

random DifficultyLevel difficulty(Course);  

random IntelligenceLevel intelligence(Student);  

random Grade (Student, Course);  

random Boolean teacherOfLikesAdvisorOf (Course, Student);  

PREDICATE LOGIC:  

// everybody likes him- or herself  

likes (p, p).  

OUTCOMES  

We don’t really observe any significant results in another algorithm but in this complex scenario 

MC-SAT outperforms Gibbs as shown in Fig 4(a) and 4(b). 

 

MC-SAT GIBBS 
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Fig-4. (a) 

 
Fig. 4 (b) 

 

131 secs 148 secs 

  

 

Conclusion& Future Work:  

Daily day to day life problems require 

certain level of reasoning and inferencing. 

With the large data being available deriving 

important relationship and dependency 

among them is a crucial step in learning, 

thus importance of highly efficient 

inferencing algorithms has increased which 

can infer with the minimum resources and 

time. Various algorithms have been 

proposed for the same and on the basis of 

derived results we can be sure that 

inferencing algorithms are progressing 

rapidly. All theinferencing algorithms are 

tested on this open source software called 

ProbCog it’s coded with a mix of java and 

python, backend is java based and front end 

is python based though all the algorithms 

were available still we had go through 

modifying these algorithms according to 

our example. Introduction of slice sampling 

in MC-SAT increased its current 

performance under complex multi-entity 

relationship and thus it outperforms all 

other algorithms on the given scenario. As 

we see for simple example Gibbs provide 

best time complexity. Taking only 55 

seconds and MC-SAT taking much more 

time than that. But as the no. Of instances 

increases and complexity increases the time 

taken increases in Gibbs because it needs to 

find conditional probability for every 

sample present. Both use MCMCwhich 

works on this procedure but in MC-SAT slice 

sampling is the new word introduced which 

basically breaks down the problem into 

simple parts. Then we find approximate 

values of it and then combine it at the end 

to get the final outcome. Hence in mc sat 

iterating over every instance at once is 

avoided which in return saves a bit of time. 

Hence in complex scenario Mc-Sat takes 

131 seconds to complete whereas Gibbs 

takes 148 seconds.  

Directions for future work include 

generation of a plug-in to include MC-Sat in 

unbbayes framework, which further will 

improve and reduce the problem of 

scalability in MEBN.  
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