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Abstract: We propose a design strategy based on memristors, adaptive nanodevices that are basically immune 

to variability. In a spiking neural network that performs unsupervised learning, memristors serve as synapses. 

Memristors alter their spike timing dependent plasticity in order to adapt and learn. A rule that resembles 

homeostasis is used to change the threshold of neurons. System-level simulations demonstrate that 

performance can be compared to that of conventional supervised networks of a comparable level of complexity. 

The robustness of the scheme, its unsupervised nature, and the potency of homeostasis are also demonstrated, 

demonstrating that the system can continue to function even when the various memristor parameters are 

significantly changed. Additionally, the network may alter in response to stimuli using various coding systems. 
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1. Introduction: 

Microelectronics has long been predicted to undergo 

a revolution. Nanodevices offer innovative functions 

like memristivity and are compact and low power 

[1]. However, their less desirable characteristics—

strong unpredictability and difficulty achieving an 

adequate yield—have made their introduction into 

actual products difficult. Architectures and design 

approaches with a true immunity to device 

variability and a high degree of fault tolerance would 

be necessary to fully realise the potential of 

nanoelectronics. 

Boosting neural networks have a significant 

advantage over artificial systems because the brain, 

in particular, relies on erratic and unpredictable 

synapses and neurons [2]. Despite this, the brain has 

computing efficiency that is higher than that of 

artificial systems. Designs that promise cognitive 

computing and fault resistance have been made by 

integrating CMOS neurons and memristor synapses 

[3]–[10]. This study uses system simulations to give 

quantitative findings on computing performance and 

variability robustness. We demonstrate that the key 

to effective learning with exceptional memristor 

variable tolerance is a more straightforward spike 

timing dependent plasticity technique. Unsupervised 

learning is used, and a homeostatic process is 

involved. 

We provide a description of the necessary 

technologies and architecture and do system-level 

simulations on the database [11] to demonstrate the 

effectiveness and resilience of the technique. A layer 

to label the outputs can be added to the system's 

first totally unsupervised layer, which uses a reduced 

version of spike timing dependent plasticity to 

extract features from the inputs (section III). The 

network achieves good tolerance to the fluctuation 

of different memristors' properties and performs 

favourably when compared to traditional, supervised 

networks with a comparable number of configurable 

parameters. 

Technical background:  

A number of classes of adaptable devices have 

appeared recently. Memristors (memristive devices) 

[1], resistive RAMs [12], and adaptive transistors like 

NOMFETs [13] and OG-CNTFETs [14] are the most 

well-known of these. Utilizing them as synapses in 

neuromorphic circuits is a novel strategy (electronic 
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circuits that work analogously to the brain). In 

particular, it has been suggested [8,[9],[15]] and 

experimentally demonstrated [4] that such devices 

could mimic a biological synaptic trait known as 

spike timing dependent plasticity (STDP) [16],[17]—a 

characteristic that is thought to be the basis for 

learning in the brain [18],[19]. A significant 

advancement in computing might come from a 

system made of CMOS neurons and nanoscale 

synapses, which could enable cognitive-type 

activities. Through programmes like the DARPA 

SyNAPSE programme in the United States or 

initiatives of a similar nature in Europe and Asia, this 

same concept is currently generating a lot of 

interest. Its sustainability has yet to be proven, 

though. 

All of these technologies have a significant amount 

of variability, as was earlier stated [20],[21]. Though 

it is believed that the issue will become better as 

technology improves, this improvement won't be 

externally observable, especially when we scale 

down to really small scales where the devices are 

more subject to manufacturing process variations. 

Because of this, it is challenging to create systems 

that can benefit from their enhanced capabilities. 

This study sheds some light on some possible uses 

for this technology. 

In the framework of nanotechnological 

implementations, there have been numerous 

recommendations for the use of changeable 

adaptive devices. The majority of the suggested 

architectures use state-based supervised neural 

networks [7] or programmable logic (FPGA type) [22, 

23]. In the first strategy, error mapping and 

redundancy are used to control variability; in the 

second, supervised learning based on error gradient 

descent is used in a conventional neural network 

strategy. 

Our method addresses the variability problem in 

nanodevices via unsupervised learning and 

asynchronous spiking neural networks. It is novel 

and was inspired by recent work in computational 

neuroscience and neural networks [24]–[27]. 

Numerous studies that have been published have 

employed this strategy. As was already indicated, 

there have been numerous recommendations to use 

memristive devices for STDP [8, [9], [15]]. We 

suggest a streamlined STDP structure in this study 

that, in our opinion, will be simpler to implement 

and allow for more organic learning. Furthermore, 

we suggest a homeostasic property for the neurons 

that has never been employed in this setting but is 

demonstrated to be crucial for the robustness of the 

approach. Memristors with STDP have already been 

demonstrated to facilitate receptive field creation 

using an unsupervised strategy that is compatible 

with variability and synchronous neurons [5]. Our 

study uses asynchronous designs, which are 

common in the neuromorphic field [28, 29], to 

complete learning on a shared dataset. Utilizing 

entirely digital designs is the final method for using 

memristors to facilitate learning in a variability-

compatible manner [10]. As a result, more hardware 

is needed per synapses [3]. In this article, we 

demonstrate how employing nanodevices with 

continuous conductance variation, variation 

tolerance may be maintained. 

Network And Its Implementation Are Presented: 

A. Architecture: 

 
Figure 1:  The topology of a circuit. The CMOS input 

layer and the CMOS output layer are represented 

by horizontal black cables (vertical grey wires). 

Adaptive nanodevices are located at the 

intersection of the horizontal and vertical wires. 

In this study, we initially suggest a straightforward 

two-layer construction. I/O CMOS neurons are linked 
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by nanodevices called synapses in a feed-forward 

manner with a crossbar structure (described below). 

A compressed STDP protocol is used to teach the 

synapses (II.B.1). The output neurons exhibit a 

homeostatic trait and leaky integrate-and-fire 

behaviour (II.B.2) (II.B.4). Additionally, they are 

related through blocking linkages created by diffuser 

networks (II.B.3) 

Numerous potential coding strategies, as detailed in 

section III, are used by the input neurons to send the 

stimuli as asynchronous voltage spikes (The 

relationship between spiking rate and stimulus 

strength). For example, the neuromorphic society 

may have developed a cochlea or spiking retina that 

directly causes these feelings [30, 31]. It is logical to 

arrange the nanodevices in the whole crossbar 

depicted in Fig. 1. The squares represent the 

nanodevices, while the dots represent CMOS silicon 

neurons and the synaptic driving circuits they are 

connected to. In actuality, synapses serve as tunable 

resistors. The crossbar arrangement enables the 

output to receive the whole current flowing through 

all of the synapses when several synapses are active 

simultaneously (i.e., receiving spikes). The setup of 

the system could possibly be more advanced. CMOL 

architecture, in which a crossbar of nanodevices is 

built on top of CMOS driving circuits and neurons [7]. 

As a result of learning, the output neurons will 

develop selectivity to particular properties included 

in the input patterns, making them more responsive 

to the numerous stimuli classes that are provided in 

an entirely unsupervised manner. The crossbar 

architecture cannot be implemented until the 

learning rule of the nano devices is totally local. The 

neurons' behaviour must be straightforward and 

simple to implement in a constrained area. We will 

now discuss how to do this. 

 

 

 

 

 

 

 

 

B. Neurons and synapses 

 
Figure 2. Pulses for an efficient STDP (voltage pulses 

as a function of time). 

When an input neuron spikes, a PRE pulse is 

transmitted to the nanodevices connected to it. 

When an output neuron spikes, a POST spike is 

applied to the linked nanodevices. When the applied 

voltage (the difference between the voltages applied 

at the two ends) contacts VT+ or VT-, the device's 

conductance changes, correspondingly. 

1) Synaptic activity Synapses function in this system 

in one of two separate ways. Due to the fact that 

they are variable resistors, they transmit pulses with 

varying conductance (or weight). The foundation for 

the system's learning is laid by the fact that they 

likewise alter their weight in response to the activity 

of the neurons to which they are linked. 

These instructions are used to programme the 

memristive nanodevices. They become more 

conductive when a positive voltage pulse is applied 

that is higher than the VT+ threshold. They lose 

conductance when a voltage pulse is supplied that is 
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below the negative threshold VT- [4], [8]. 

Memristors can implement spike timing dependent 

plasticity (STDP), a learning principle used by 

synapses in the brain, according to earlier research. 

In a publication similar to [8], [9], this was proposed, 

and [4] provided empirical evidence for it. We 

suggest a simpler modification to existing systems 

(Fig. 2). 

• An input neuron spikes when it sends a lengthy 

pulse to a synaptic junction (PRE pulse). The 

memristor can receive a small amount of current 

from this voltage, but not enough to reprogram it. 

The output neurons integrate this current (resistor 

role of the synapse). When numerous synapses 

attached to the same output neuron activate at 

once, currents are pooled. 

• A spiked output neuron emits pulses that alternate 

between a positive and a negative bias (POST pulse). 

In the absence of any PRE pulse, just the second 

component of the device crosses a threshold, 

lowering the synapse weight by w. As demonstrated 

in Fig. 2, the voltage provided to the device actually 

makes it heavier by w+ if the input neuron had just 

spiked and the PRE pulse was still being applied to 

the other end of the device. 

This simple learning concept, the foundation of all 

learning is cognition, which nanodevices make 

simple to use. There is no requirement for delay 

matching between the PRE and POST synaptic 

waves, which should make developing the driving 

circuitry much simpler than the fully bioinspired and 

more complicated technique provided in [9]. 

Additionally, our feed-forward implementation is 

better suited to the learning rule. 

This key concept for learning functions in a clear and 

understandable manner. The synapses linked to 

previously spiking input neurons have their weights 

boosted by w+ when an output neuron declares a 

spike (at time tspike) (from tspike to tspike-tPRE, if 

tPRE is the duration of the PRE pulse). All of its other 

synapses' weights are decreased by w. This increases 

the neuron's sensitivity to the specific pattern that 

initially stimulated it and raises the possibility that it 

will spike in response to another occurrence of that 

pattern. This strategy, which we show in this 

research works remarkably well in practise, has been 

conceptualised in some degree in [27]. 

In our system simulations, we simulate the weight 

increases and decrements w+ and w using the 

memristor with new window function from [4],[32]. 

When a POST happens: In the event that a PRE It 

took place right before the weight was increased by 

 
in the other cases it is decreased by 

 
The exponential factor shows that applying the same 

voltage pulse repeatedly to most memory 

technology has been found to have a lower impact 

on the conductivity of the device [4],[32]. This typical 

(partially multiplicative) device activity is helpful for 

learning. The selected PRE and POST pulse voltages 

have a substantial influence on the parameters +, -, 

+, +, and +. Device variability may affect these 

figures as well as the minimum and maximum 

weights, wmin and wmax. 

2) Output neuron dynamics: For the devices to be 

used to their full potential, they must be connected 

to silicon neurons, which are processing units that 

can integrate their input, process it, and produce 

spikes in a bio-inspired manner. The usage of 

analogue circuits with transistors that typically 

function in the sub-threshold zone and are capable 

of receiving and producing asynchronous spikes is a 

well-researched technique in the field of 

neuromorphics [28, 29]. Variability is still a 

significant issue for such devices, while being less 

severe than in nanodevices. This challenge [31] is 

faced by any neuromorphic design, and it will only 

get more challenging as technology advances. 

The fundamental equation is designed to be solved 

by leaky integrate-and-fire neurons (expressed in 

normalised unit): 
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where V represents the neuron's state variable 

(current or voltage). Iinput is the amount of current 

flowing through the neuron's crossbar line: 

 
where Ij denotes the flow of current across every 

output neuron-connected memristor j. 

The integration is halted for a period of time known 

as the refractory period when V reaches a particular 

threshold, Vth, at which point V is reset to zero. 

These neurons have been built using either 

neuromorphic circuits with positive feedback, like 

those in [28, [29], or compact CMOS neuromorphic 

circuits, like those in [33]. 

This sort of CMOS device uses incredibly little power 

since the subthreshold zone is where most 

transistors work. and because asynchronous 

processing is employed [28],[29]. However, 

nanotechnology will have a significant impact on the 

power needs of the nanosynapses, and those needs 

should go up as the devices get bigger. 

The spiked output neurons should provide the 

layer's other output neurons get inhibitory signals 

that stop them from firing during the inhibition 

period and reset their potential to 0. 

Using diffuser networks, as in [28], it is possible to 

effectively produce this inhibition between the 

neurons. The network resembles a Winner-Takes-All 

topology as a result of this inhibition [27]. 

More particular, the state variable V of the other 

output neurons is reset to zero when an output 

neuron spikes during a time inhibitor. 

4) Homeostasis: The architecture's final difficulty is 

modifying the neurons' threshold. Despite the fact 

that it is required, this is not the case for spiking 

neurons even though it is normal for traditional 

artificial neuron networks. Using a revolutionary 

strategy called homoeostasis, which was inspired by 

biology [2], the neurons generate a goal activity (i.e. 

a number of times an output neuron should spike 

over an extended period of time, like 100 digits 

presentation). If the neuron's average activity is 

higher than the target, the threshold is consistently 

raised; if it is lower, the threshold is reduced.. 

The thresholds of the neurons to the stimuli for 

which they have developed a specialisation are 

altered as a result, ensuring that all of the neurons' 

outputs are utilised. In neuromorphic circuitry, 

homoeostasis has been achieved using analogue 

memories, as demonstrated in [34], or it could be 

accomplished digitally. 

Results: For the memristor output in this work, a 

new window function was taken into consideration. 

The development of a circuit for spiking neurons 

uses a memristor with a proposed window function. 

The outcomes are contrasted with the Joglekar and 

Biolek window function, a traditional window 

function. A two-layer thin TiO2 film (size D 10 nm) 

sandwiched between platinum contacts makes up 

the physical model of the memristor: 

0< x=w/D <1 

The variable w (width) varies from 0 to 1. 

According to the Joglekar window function [3]: 

 ( )    (    )   

where p is an positive integer. It determines the 

models behavior in linear or in nonlinear drift 

disappear as it increases. Biolek proposed another 

window function [4] ,introduced a current 

parameter I along with the variable m and p which 

are related as: 

 (   )          (  )    

The proposed window function equation is given as: 

 ( )       (    ( )     )           
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using the above mentioned window function the memristor V-I characteristics are simulated. The graphs is 

generated for comparing the Biolek and Joglekar window functions for different p-values with proposed window 

function. 

Figure 3: The window function plot for Joglekar window function and proposed window functions (left) and the 

graph of Biolek window function with proposed window function (right). 

In the figure 3 the propose window function f(x) characteristics are shown with respect to x ate different value of 

parameter p. The variable x varies as the un doped region width is varies from 0 to D. In this graph the p 

value varies from 1,5 and 10 for Joglekar (Left) and Biolek (right) window while for the proposed window 

function the p is piecewise varying with c from 1 to 10.The non linearity drift parameter j is taken to be 

1. 
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Figure 4 a:V-I characteristics for Joglekar (Left) and Biolek (Right) window function at voltage supply frequency f= 

6Hz (top) and f=10Hz (bottom). 

  

Figure 4 b:V-I characteristics for proposed window function at voltage supply frequency f= 6Hz (left) and f=10Hz 

(right). 
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Figure 4a and 4b shows the V-I characteristics for the memristor with Joglekar/Biolek window function (figure 4a) 

and Biolek window function 4(b) at two different input voltage supply frequency of 6Hz and 10Hz.As the frequency 

increases the curve is shrinks towards the centre. 

The script is simulated for the convergence of a neuron with memristor non-linear for different values of p using 

the proposed window functions. The results are compared in graphs. The percentage detection error of given 

patterns is taken as performance parameter for training the neural network model. Figure 5 a, b and c shows the 

training response of simulated NN circuit using spiking neuron designed from window function based three 

different memristor. 

Figure 5 a shows the convergence plot during NN model development using Joglekar window function based 

memristor. The y axis shows the percent detection error and x axis are number of epochs. As the epochs increases 

the error is reducing. In 650 (approx.) epochs the error reaches to zero. Similarly in figure 5b and 5c the the error 

converges to zero at 600 epoch number and 550 epoch number. Hence it shows that our proposed window 

function based memristor application in spiking neuron models has faster learning rate as compared to 

conventional window functions. 

The figure shows the symbolic block based representation of  showing the memristor based neuron as a device. In 

this neuron device two trigger pulses are associated for reset and read signal input. As the reset or read input are 

given the switch goes on and input voltage level of Vreset or Vread is acknowledged at the positive port terminal 

of memristor device. The voltage at the memristor is collected as the storage buffer. In the condition of different 

input selection like Vread,Vreset or Vwrite output pulses are generated at different pulse width as shown in the 

figure 6 (b). 

 

Figure 5a: Training performance of NN model for memristor with Joglekar window function. 

 
Figure 5b: Training performance of NN model for memristor with Biolek window function. 
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Figure 5c: Training performance of NN model for memristor with proposed non linear window function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6(a) : Representation of memristor based neuron circuit. (b) The read,write and reset input based temporal 

response for control signal in a single step time. 
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Figure 7: (a) State transition of neuron response with respect to time. (b) Variation in the trigger threshold with 

respect to time (c) Spikes generated at the neuron mode of memristor with proposed window function.(d) Percent 

error at different epoch with respect to variation in the threshold. 

The neural network developed using the proposed window function based memristor circuit is trained for different 

input pateern. The neuron states are changed from reset ,read to write state as shown in figure 7(a) and the 

trigger threshold is varied under the different training epochs as shown in figure 7(b).Different neuron spikes 
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patterns are generated as shown in figure 7(c) and the training is finally converged at zero value of percent error at 

near about 4000 epochs.   

 

 

 

    
    

    
    

    
    

   

 

 

Figure 8: Pattern recognition step by step progress representation using proposed window function based 

memristor circuit of neuron. 
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Conclusion:  

In this research, we demonstrate how to do 

unsupervised learning in a very variability-resistant 

manner utilising basic memristors connected to 

window function circuits. The basis for this tolerance 

and the system's exceptional adaptability is 

nonsupervision. Also mentioned as a crucial element 

to maintain insensitivity to signal fluctuation is 

homeostasis. A second-layer memristor-based 

method for supervised learning was also introduced 

in the previous section. When used to label the 

output of the first unsupervised layer, it maintains 

high variability robustness and provides a way for 

fully learning real-world case data. Future circuits 

that efficiently and compactly process natural data 

may be built on the basis of this design concept. 

These circuits' capacity for unsupervised learning will 

enable them to adapt to a variety of environments. 

Future studies should focus on experimentally 

proving these concepts and demonstrating how they 

can be scaled to increasingly complex multi-layer 

networks and a variety of sensory stimuli. 

Acknowledgements  

The MCN for this manuscript is IU/R & D/2022-

MCN0001754. 

 

References 

[1] D.B. Strukov, G.S. Snider, D.R. Stewart, and R.S. 

Williams, “The missing memristor found,” Nature, 

vol. 453, May. 2008, pp. 80-83. 

[2] E. Marder and J.-M. Goaillard, “Variability, 

compensation and homeostasis in neuron and 

network function,” Nat. Rev. Neurosci., vol. 7, Jul. 

2006, pp. 563-574. 

[3] G. Snider, “Instar and outstar learning with 

memristive nanodevices,” Nanotechnol., vol. 22, 

2011, p. 015201. 

[4] S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. 

Mazumder, and W. Lu, “Nanoscale Memristor Device 

as Synapse in Neuromorphic Systems,” Nano Lett., 

vol. 10, Apr. 2010, pp. 1297-1301. 

[5] G.S. Snider, “Self-organized computation with 

unreliable, memristive nanodevices,” Nanotechnol., 

vol. 18, 2007, p. 365202. 

[6] M. Versace and B. Chandler, “The brain of a new 

machine,” IEEE Spectrum, vol. 47, 2010, pp. 30-37. 

[7] J.H. Lee and K.K. Likharev, “Defect-tolerant 

nanoelectronic pattern classifiers,” Int. J. Circuit 

Theory Appl., vol. 35, 2007, pp. 239-264. 

[8] G.S. Snider, “Spike-timing-dependent learning in 

memristive nanodevices,” Prof. of IEEE International 

Symposium on Nanoscale Architectures 2008 

(NANOARCH), 2008, pp. 85-92. 

[9] J.A. Pérez-Carrasco, C. Zamarreño-Ramos, T. 

Serrano-Gotarredona, and B. Linares-Barranco, “On 

neuromorphic spiking architectures for 

asynchronous STDP memristive systems,” Proc. of 

2010 IEEE Int. Symp. Circuits Systems (ISCAS), 2010, 

pp. 1659-1662. 

[10] G. Snider, R. Amerson, D. Carter, H. Abdalla, 

M.S. Qureshi, J. Léveillé, M. Versace, H. Ames, S. 

Patrick, B. Chandler, A. Gorchetchnikov, and E. 

Mingolla, “From Synapses to Circuitry: Using 

Memristive Memory to Explore the Electronic Brain,” 

Computer, vol. 44, 2011, pp. 21-28. 

[11] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, 

“Gradient-based learning applied to document 

recognition,” Proc. IEEE, vol. 86, 1998, pp. 2278-

2324. 

[12] G.W. Burr, B.N. Kurdi, J.C. Scott, C.H. Lam, K. 

Gopalakrishnan, and R.S. Shenoy, “Overview of 

candidate device technologies for storage-class 

memory,” IBM J. Res. Dev., 2008. 

[13] F. Alibart, S. Pleutin, D. Guérin, C. Novembre, S. 

Lenfant, K. Lmimouni, C. Gamrat, and D. Vuillaume, 

“An Organic Nanoparticle Transistor Behaving as a 

Biological Spiking Synapse,” Adv. Funct. Mater., vol. 

20, 2010, pp. 330-337. 

[14] G. Agnus, W. Zhao, V. Derycke, A. Filoramo, Y. 

Lhuillier, S. Lenfant, D. Vuillaume, C. Gamrat, and J.-

P. Bourgoin, “Two-Terminal Carbon Nanotube 

Programmable Devices for Adaptive Architectures,” 

Adv. Mater., vol. 22, 2010, pp. 702-706. 

[15] A. Afifi, A. Ayatollahi, and F. Raissi, 

“Implementation of biologically plausible spiking 

neural network models on the memristor crossbar-

based CMOS/nano circuits,” European Conf. on 

Circuit Theory and Design (ECCTD), 2009, pp. 563-

566. 

1212



NeuroQuantology | DEC 2022 | Volume 20 | Issue 19 | Page 1201-1213 | doi: 10.48047/nq.2022.20.19.NQ99112 

Noor Fatima Siddique / Non linear window function associated memristor application for design of spiking neuron circuit 

 

[16] H. Markram, J. Lubke, M. Frotscher, and B. 

Sakmann, “Regulation of Synaptic Efficacy by 

Coincidence of Postsynaptic APs and EPSPs,” 

Science, vol. 275, Jan. 1997, pp. 213-215. 

[17] G.-Q. Bi and M.-M. Poo, “Synaptic modification 

by correlated activity: Hebb’s Postulate Revisited,” 

Annu. Rev. Neurosci., vol. 24, 2001, pp. 139-166. 

[18] Y. Dan and M.-ming Poo, “Spike Timing-

Dependent Plasticity of Neural Circuits,” Neuron, vol. 

44, 2004, pp. 23-30. 

[19] A. Gorchetchnikov, M. Versace, and M. 

Hasselmo, “A model of STDP based on spatially and 

temporally local information: Derivation and 

combination with gated decay,” Neural Networks, 

vol. 18, Jul. 2005, pp. 458-466. 

[20] S.H. Jo and W. Lu, “CMOS Compatible Nanoscale 

Nonvolatile Resistance Switching Memory,” Nano 

Lett., vol. 8, pp. 392-397. 

[21] J. Borghetti, G.S. Snider, P.J. Kuekes, J.J. Yang, 

D.R. Stewart, and R.S. Williams, “`Memristive’ 

switches enable `stateful’ logic operations via 

material implication,” Nature, vol. 464, Apr. 2010, 

pp. 873-876. 

[22] J.R. Heath, P.J. Kuekes, G.S. Snider, and R.S. 

Williams, “A defect-tolerant computer architecture: 

Opportunities for nanotechnology,” Science, vol. 

280, 1998, p. 1716--1721. 

[23] A. DeHon, “Array-based architecture for FET-

based, nanoscale electronics,” IEEE Trans. 

Nanotechnol., vol. 2, 2003, pp. 23-32. 

[24] R. Guyonneau, R. VanRullen, and S.J. Thorpe, 

“Neurons Tune to the Earliest Spikes Through STDP,” 

Neural Computation, vol. 17, Apr. 2005, pp. 859-879. 

[25] T. Masquelier and S.J. Thorpe, “Unsupervised 

Learning of Visual Features through Spike Timing 

Dependent Plasticity,” PLoS Comput Biol, vol. 3, Feb. 

2007, p. e31. 

[26] J.M. Brader, W. Senn, and S. Fusi, “Learning 

Real-World Stimuli in a Neural Network with Spike-

Driven Synaptic Dynamics,” Neural Computation, vol. 

19, Nov. 2007, pp. 2881-2912. 

[27] B. Nessler, M. Pfeiffer, and W. Maass, “STDP 

enables spiking neurons to detect hidden causes of 

their inputs,” Advances in Neural Information 

Processing Systems (NIPS’09), p. 1357–1365. 

[28] J.V. Arthur and K. Boahen, “Learning in silicon: 

Timing is everything,” Advances in neural 

information processing systems, vol. 18, 2006, p. 

281--1185. 

[29] P. Livi and G. Indiveri, “A current-mode 

conductance-based silicon neuron for address-event 

neuromorphic systems,” Proc. of 2009 IEEE 

International Symposium on Circuits and Systems 

(ISCAS), 2009, pp. 2898-2901. 

[30] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 

128× 128 120 dB 15 μs Latency Asynchronous 

Temporal Contrast Vision Sensor,” IEEE Journal of 

Solid-State Circuits, vol. 43, 2008, pp. 566-576. 

[31] V. Chan, S.-C. Liu, and A. van Schaik, “AER EAR: A 

Matched Silicon Cochlea Pair With Address Event 

Representation Interface,” IEEE Trans. Circuits Syst. 

Regul. Pap., vol. 54, 2007, pp. 48-59. 

[32] M.D. Pickett, D.B. Strukov, J.L. Borghetti, J.J. 

Yang, G.S. Snider, D.R. Stewart, and R.S. Williams, 

“Switching dynamics in titanium dioxide memristive 

devices,” J. Appl. Phys., vol. 106, 2009, p. 074508. 

[33] G. Indiveri, E. Chicca, and R. Douglas, “A VLSI 

array of low-power spiking neurons and bistable 

synapses with spike-timing dependent plasticity,” 

IEEE Transactions on Neural Networks, vol. 17, 2006, 

pp. 211-221. 

[34] Mohd. Ahmer et. al., “Memristor Emulation and 

Analog Application using Differential Difference 

Current Conveyor of CC-II in CMOS Technology,” 

Materials Today: Proceedings, Volume 51, Part 1, 

2022, Pages 234-239 

[35] Mohd. Ahmer et. al. “A Novel Memristor 

Emulator Design and Universal Biquad Filter 

application using second Generation High Swing 

Differential Current Conveyor Transconductance 

Amplifier in 130nm CMOS Process,” Materials Today: 

Proceedings, Volume 51, Part 1, 2022, Pages 150-

155. 

 

 

1213




