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Abstract 

In this study technical diagnostic tests and economical lifetime assessment of transformers are investigated to 
evaluate the overall health condition of working transformers. Two artificial intelligence models including artificial 
neural network and adaptive neuro-fuzzy inference system models are presented to determine the health index for 
transformers. The technical and economical parameters are used as input parameters to develop the models. 
Technical parameters are extracted from oil characteristics and dissolved gas analysis of different transformers. 
Economical parameters are constructed with transformer capital investments, maintenance and operating costs. The 
models are developed using 226 experimental field datasets of transformers technical and economical parameters. 
The models are trained using 80% of the experimental datasets. The remaining 20% is used to evaluate the 
performance and applicability of the models. The results prove that the models can be used to determine the health 
condition of transformers with high accuracy. 
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1 Introduction 

Power transformer is one of the most critical assets in electricity networks. Comprehensive condition 

assessment of transformers should be developed to achieve sustainable reliability of power system. The overall 

condition of a transformer should be evaluated in a comprehensive method considering technical and economical 

parameters. It should be noted that most utilities operators are highly motivated to assess the overall condition of 

transformers because there is an increasing demand for improved economical and technical performance. To 

achieve the optimal balance among capital investments, asset maintenance costs, and operating performance, there 

is a need to provide economic and technical evaluation for engineering decisions and capital replacement plans [1-

4]. 

Transformer condition assessment is an important issue that studied in the literature from different aspects. 

The frequency response analysis test as one of the sensitive tools for detecting electrical and mechanical faults 

inside transformers is presented in [5, 6]. Degradation of cellulosic insulation of transformer considering the 

formation of furan products in insulating oil and effects of oxygen and water content on transformer oil aging are 

studied in [7-9]. Investigation on furan compounds in transformer oil [7, 10], dissolved gas analysis (DGA) [9], 

transformer dielectric monitoring [11], and moisture content of oil and paper insulation [12-14] are presented in the 

literature. Methods for life assessment of transformers are investigated in [1, 4]. Condition assessment of power 

transformers, fault diagnosis of power transformers, and prediction of thermal ageing in transformer oil using 

artificial neural networks (ANN) are presented in [15]. 

Health Index (HI) is a procedure of combining complex condition information to give a single numerical value 

as a comparative indication of overall condition of transformer. It helps the operator to make the distinction 

between degradation which needs maintenance and diagnosis plans, and degradation that indicates approaching 

end of life. HI provides a methodology of employing existing engineering knowledge and experience to predict future 

performance, failure probabilities and replacement plans. Transformer HI evaluation using technical parameters are 

presented in [16-21], and the economical aspects of transformer operation are investigated in [22-26]. 

In this paper a quantitative approach is presented to calculate the HI of transformers, which combines the 

results of various chemical and electrical tests, and the information of operating and maintenance costs of 

transformers. It means that the proposed HI is calculated using the technical and economical parameters altogether. 
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ANN and adaptive neuro-fuzzy inference system (ANFIS) models are used to calculate transformer HI. The 

mature well-known ANFIS and ANN methods are used as modelling tools to calculate transformer HI with technical 

and economical parameters. ANN [15, 27] and ANFIS [28, 29] methods are used in the literature for fault diagnosis 

and aging of power transformers, but they have not been used for transformer HI calculation. 

The models are applied on 226 experimental field datasets of transformers provided by Iran Transformer 

Research Institute (ITRI) and their performances are compared. The operating and loading conditions of 

transformers are different depending on the type of the industrial facilities they are utilised in, such as power plants, 

regional electricity companies, petrochemical and refinery plants, cement, steel and other industries. 

Technical parameters obtained from transformer diagnostic tests include breakdown voltage (BDV), 

dissipation factor (DF at 90°C), Acidity, interfacial tension (IFT), Water (Water content in oil at 

20°C), %WaterPaper (per cent Water in Paper insulation), Furfural (2-Furaldehyde content), and DGA factor (DGAF). 

Economical parameters obtained from transformer aging variables and cost functions are PE% [per cent of 

economical lifetime (EL)], and FAA (aging acceleration factor). These 10 parameters are the inputs of ANN and ANFIS 

models, and the output parameter of the models is HI. 

The main contributions of the paper are: (i) Considering the technical and economical aspects of transformer 

characteristics (using 10 various technical and economical parameters) at the same time to calculate an overall HI for 

transformers. (ii) Considering DGAF parameter instead of total dissolved combustible gas, and proposing the 

inclusive PE% parameter to provide a comprehensive economical view. (iii) Investigating on a large experimental 

dataset collected from different power transformers. 

2 Modelling 

In this section ANN and ANFIS models are presented to calculate the transformer HI value. Dataset is divided 

randomly into training (80% of dataset) and testing (20% of dataset) subsets which the testing dataset is used to 

evaluate performance of the models. The models should be trained in order that predict the HI for unseen data 

(testing dataset) with possible least deviation (error) from experimental field HI values. 

One of the strong points of this work is use of a large experimental dataset. In this paper a diverse dataset of 226 

test records of power transformers with different voltage levels and power ranges in different weather and 

operating conditions are used. Diagnostic tests are conducted on power transformers located in different regions of 

vast country of Iran with different climates in terms of temperature, humidity and atmospheric pressure. Moreover, 

operating and loading conditions of transformers are different depending on the type of the industrial facilities they 

are utilised in. Therefore, the results of the models will be accurate by using such a diverse and large dataset. The 

model provides the best prediction of the HI and decisivelycan be referred as a reliable model trained by the diverse 

dataset. ANN and ANFIS methods are data driven tools and their parameters and weight matrices are adjusted using 

input/output data. 

2.1 ANN model 

ANN is an artificial intelligence method that its idea is inspired by biological structure of the human brain. 

Each kind of data with complicated relations can be modelled via ANN which can operate like a black box model that 

requires no detailed information about the investigated system [15, 30]. 

ANN is an efficient model that assesses transformer health condition by learning the relationships between 

inputs (transformer technical and economical parameters) and output (HI) based on training data. 

To apply the technique, a three-layer (one hidden layer) feed-forward neural network trained with the 

Levenberge–Marquardt (LM) back-propagation (BP) algorithm is employed. From a practical perspective, it has been 
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shown through extensive experiments that single-hidden-layer neural networks are superior to networks with more 

than one hidden layer with the same level of complexity and also the latter are more susceptible to fall into poor 

local minima. In engineering applications, there is a clear tendency toward using neural networks with only one 

hidden layer [30].  

2.2 ANFIS model 

ANFIS is an adaptive network, consisting of a number of nodes connected through directional links, which 

uses neural network learning algorithms and fuzzy reasoning to map inputs into an output. The ANFIS is a strong tool 

for the prediction and simulation of complex non-linear systems. The hybrid neuro-fuzzy approach works by applying 

neural learning rules to identify and tune automatically the membership function parameters [31]. The ANFIS 

structure consists of five layers (fuzzy layer, product layer, normalised layer, defuzzify layer, and total output layer) is 

shown in Fig. 2. 

Schematic diagram of the ANFIS structure 

In this work, the ANFIS model is developed on the basis of the subtractive clustering algorithm with eight 

inputs and one output. The subtractive clustering method partitions the data into groups called clusters, and 

generates a fuzzy inference system with the minimum number of rules required to distinguish the fuzzy qualities 

associated with each of the clusters. The advantage of the subtractive clustering algorithm is the fact that the 

number of clusters does not need to be specified in advance and the algorithm itself determines the number of 

clusters. In this method, the total number of fuzzy rules is only related to the number of clusters. Hence, it will be a 

correct choice to use this algorithm for solving the problems with the large number of input dimension. 

ANFIS applies a hybrid learning algorithm which is a combination of least-squares and BP gradient descent 

methods, in order to train the network according to input–output data pairs. In the hybrid learning algorithm the 

gradient descent method is used to assign the premise parameters in layer 1, whereas the least-squares method is 

employed to identify consequent parameters in layer 4. The hybrid learning procedure is an efficient method to 

obtain the optimal premise parameters and consequent parameters in the learning process [31]. 

3 Input parameters for the models 

The technical and economical input parameters of the models used to calculate the output of the models (HI 

value), are BDV, DF, Acidity, IFT, Water, %WaterPaper, Furfural, DGAF, PE%, and FAA. The experimental field HI values 

provided by transformer experts at ITRI are used as the output for the presented models. 

3.1 Breakdown voltage 

BDV is a measure of the ability of the insulating oil to withstand electric stress and has primary importance 

for the safe operation of electrical equipment. Dry and clean oil exhibits an inherently high breakdown voltage. Free 

water and solid particles, the latter particularly in combination with high levels of dissolved water, tend to migrate to 

regions of high electric stress and reduce breakdown voltage dramatically. A low value of breakdown voltage can 

indicate that one or more of these are present. However, a high breakdown voltage does not necessarily indicate the 

absence of all contaminants [32-35]. 

3.2 Dissipation factor at 90°C 

DF is a measure for dielectric losses within the oil. This parameter is very sensitive to the presence of soluble 

polar contaminants, ageing products or colloids in the oil. Changes in the levels of the contaminants can be 

monitored by measurement of this parameter even when contamination is so slight as to be near the limit of 

chemical detection. High values of DF may deleteriously affect the dielectric losses and/or the insulation resistance 
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of the electrical equipment. Useful additional information can be obtained by measuring DF at both ambient 

temperature and a higher temperature such as 90°C [32-35]. 

3.3 Acidity 

The acidity (neutralisation value) of oil is a measure of the acidic constituents or contaminants in the oil. The 

acidity of used oil is due to the formation of acidic oxidation products. Acids and other oxidation products will, in 

conjunction with water and solid contaminants, affect the dielectric and other properties of the oil. Acids have an 

impact on the degradation of cellulosic materials and may also be responsible for the corrosion of metal parts in a 

transformer. The acidity increment rate of the oil in service is a good indicator of the ageing rate. The acidity level is 

used as a general guide for determining when the oil should be replaced or reclaimed [32-35]. 

3.4 Interfacial tension 

The IFT between oil and water provides a means of detecting soluble polar contaminants and products of 

degradation. This characteristic changes fairly rapidly during the initial stages of ageing but levels off when 

deterioration is still moderate. With overloaded transformers, the deterioration of materials is rapid and IFT is a tool 

for detection of deterioration [32-35]. 

3.5 Water content in oil at 20°C (Water) 

Depending on the amount of water, the temperature of the insulating system and the status of the oil, the 

water content of insulating oils influences the breakdown voltage of the oil, the solid insulation, and the ageing 

tendency of the liquid and solid insulation. There are two main sources of water increase in transformer insulation: 

ingress of moisture from the atmosphere; and degradation of insulation. 

For the proper interpretation of moisture content and for trending purposes, the analytical result of water 

content in the oil given at a sample temperature needs to be corrected to that at a defined temperature. For 

practical reasons, the defined temperature is set at 20°C, since below 20°C the rate of diffusion of water is too slow 

to achieve equilibrium in operational equipment [32]. In this paper in order to make the parameters at different oil 

temperatures comparable, the corrected values (to 20°C) are used according to standard [32-35]. 

3.6 Per cent water in paper insulation 

Monitoring water content in oil is part of a set of routine tests for transformer oil. However, wet oil does not 

always mean a wet paper insulation. As a transformer cools down due to load reduction or shut down, water tends 

to return to the paper, but this process is slow. Hence, there is a water buildup in the oil, giving the impression of a 

wet transformer. Such variations in oil water content hardly affect water content of paper. This is not surprising 

because more than 99% of the water is in the solid insulation. The water in the oil could be a true indicator of the 

water in paper, only if the paper and oil are in thermal equilibrium, which almost is never the case in operating 

transformers [32-35]. In this paper the %WaterPaper parameter is considered as an individual parameter to monitor 

the insulating paper condition, because the condition of transformer solid insulation is very important factor in 

determination of transformer health condition. 

3.7 2-Furaldehyde content (Furfural) 

Furanic compounds are generated by the degradation of cellulosic materials used in the solid insulation 

systems of electrical equipment. Furanic compounds that are oil soluble to an appreciable degree will migrate into 

the insulating liquid. All of these compounds except 2-furaldehyde are not very stable under operating conditions 

found in transformers. These compounds apparently form and then further degrade to 2-furaldehyde over a time 

span of a few months. 2-furaldehyde is apparently stable for several years under the same conditions. The presence 

https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-smt.2016.0184#smt2bf00345-bib-0032
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-smt.2016.0184#smt2bf00345-bib-0035
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-smt.2016.0184#smt2bf00345-bib-0032
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-smt.2016.0184#smt2bf00345-bib-0035
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-smt.2016.0184#smt2bf00345-bib-0032
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-smt.2016.0184#smt2bf00345-bib-0035
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-smt.2016.0184#smt2bf00345-bib-0032
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-smt.2016.0184#smt2bf00345-bib-0032
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-smt.2016.0184#smt2bf00345-bib-0035
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-smt.2016.0184#smt2bf00345-bib-0032
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-smt.2016.0184#smt2bf00345-bib-0035


NEUROQUANTOLOGY | OCTOBER 2022 | VOLUME 20 | ISSUE 12 | PAGE 1263-1273| DOI: 10.14704/NQ.2022.20.12.NQ77105                          
Fayzullaev Jovhar Sulton o'g'li/ Improvement of technical diagnostic methods of transformers  
 

                                                                                                                                                                              www.neuroquantology.com 

eISSN 1303-515  
 

1267 

of high concentrations of furanic compounds is significant in that this may be an indication of cellulose degradation 

from aging or incipient fault conditions [34, 35]. 

3.8 Dissolved gas analysis factor 

In this paper the purpose of using DGA is to assess the overall health condition of the transformer, not to 

determine the types of faults inside the transformer. Therefore, the DGA parameters (seven dissolved gases) are 

combined to one inclusive DGAF [18] parameter. In some studies the effect of DGA parameters on transformer HI is 

considered using dissolved combustible gas parameter [17] which is the simple summation of DGA gases 

except CO and CO2 and has two disadvantages. The first is that CO and CO2 gases which have useful information 

about paper insulation degradation [16, 36, 37], are ignored. The second disadvantage is that the importance and 

weighting of different gases [16, 18] is not considered. 

3.9 Per cent of economical lifetime (PE%) 

In this paper, the economical lifetime (EL) is calculated by life cycle cost (LCC) analysis performed in 

accordance to standard [38]. LCC analysis is an essential method of analysis in economic evaluation which 

structurally decides and equalises costs within overall life cycle. Life cycle costing is the process of economic analysis 

to assess the total cost of acquisition, ownership and disposal of a product. It can be applied to the whole life cycle 

of a product or to parts or combinations of different life cycle phases. The primary objective of life cycle costing is to 

provide input to decision making in any or all phases of a product's life cycle [38]. 

Annual equivalent cost analysis is used to model cost function in LCC analysis. In this study, the equivalent 

uniform annual cost (EUAC) method for a cash flow analysis during an operation period is employed [22, 39, 40]. 

While a transformer ages, the maintenance costs should be increased to maintain the optimal performance 

of transformer. Therefore, the operating and maintenance costs are considered in the economic lifetime evaluation 

by calculating the minimum EUAC of the transformer [22, 39, 40]. 

The EUAC is used to determine an EL with consideration of an interest rate on investment cost (IC) and 

operating cost (OC), both of which refer to the cash flow during a time period [22, 39, 40]. 

 

4 Results and discussion 

The dataset includes 226 sets of technical and economical data of transformers provided by ITRI. This 

dataset divided randomly into training (80% of dataset) and testing (20% of dataset) subsets. Therefore, 181 sets of 

training data have been used for developing the models whereas the remaining 45 sets of testing data are used to 

evaluate and demonstrate the performance of the trained model in the HI prediction with the transformer 

parameters. The results of HI calculation with ANN and ANFIS models are illustrated in the following. 

Performance of ANN is generally based on parameters of its architecture and setting. Appropriate 

designation of the initial amounts of weights and biases is very effective on the performance of the network. The BP 

LM training algorithm is a non-linear optimisation method which may not necessarily lead to a unique solution at 

each run. One of the most difficult tasks in studying ANN is finding an appropriate architecture. This task is 

performed via trial and error and the optimum number of neurons in hidden layer is identified. Increasing the 

number of the hidden layer neurons leads to improvement of the estimation ability of ANN, but when it exceeds an 

optimum number, the over-fitting problem may occur. It means that the network has memorised the training 

examples, but it has not learned to generalise for the new situations (unseen data). The way of identifying suitable 

architecture of ANN that is very time-consuming is the trial and error. 
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In this study ANN has 10 input neurons, one hidden layer containing S neurons and one output layer with 

one neuron. Therefore, the numbers of ANN modifiable parameters (weights and biases) are 12S + 1. Since the size 

of training dataset should be several times the number of modifiable parameters, the number of hidden neurons 

should not be high. Moreover, as a rule of thumb the number of hidden neurons should be between the size of the 

input layer and output layer [42]. Therefore, in this study it is not considered more than eight neurons in hidden 

layer. The optimal number of hidden neurons can be determined by finding the network through comparison among 

average calculated root mean squared error (RMSE). 

In Table 1 the average and standard deviation of RMSE for testing dataset is presented for different number 

of hidden neurons for 100 trails. 

Table 1. Comparison of average RMSE for different ANN configurations 

No. of hidden neurons Best Worst Average Standard deviation 

1 0.1704 0.3816 0.2311 0.0802 

2 0.1398 0.2076 0.1804 0.0211 

3 0.1726 0.2560 0.2112 0.0263 

4 0.1622 0.3280 0.2321 0.0499 

5 0.1569 0.3056 0.2324 0.0365 

6 0.1634 0.2356 0.2033 0.0262 

7 0.1861 0.3019 0.2200 0.0348 

8 0.1748 0.3659 0.2436 0.0551 

It can be concluded from Table 1 that optimal ANN configuration has two neurons in hidden layer, because it 

results minimum average and standard deviation of RMSE. 

The weight and bias values of the optimal ANN configuration (with two hidden neurons) have been given in 

Table 2. 
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Table 2. Weight and bias values of the optimal ANN configuration 
Neuron Hidden layer Biases (bj) Output layer 

 Weights (wij)  Weights (wjk) Bias (bk) 

 BDV DF Acidity IFT Water %WaterPaper Furfural DGAF PE% FAA  HI  

1 0.1514 −0.3776 −0.1479 −0.3690 0.2942 −0.0165 −0.0351 −0.0342 0.1259 0.2501 −0.4338 6.4284 −2.4225 

2 0.4849 7.2802 −14.2057 −8.2666 −1.0531 12.9325 −2.1099 12.2466 15.5378 31.6857 4.5269 −0.4293  

In this paper the ANFIS model with subtractive clustering method and hybrid learning algorithm is 

developed. The premise and consequent parameters for the optimum ANFIS model are given in Tables 3 and 4. 

Table 3. Premise parameters of the optimum ANFIS model 
 BDV [σi1,ci1] DF [σi2,ci2] Acidity [σi3,ci3] IFT [σi4,ci4] Water [σi5,ci5] %WaterPaper [σi6,ci6] Furfural [σi7,ci7] DGAF [σi8,ci8] PE% [σi9,ci9] FAA [σi10,ci10] 

rule 1 [8.96 75] [0.173–0.0011] [0.0517 0.0629] [4.043 33.8] [5.582 2.3] [0.6889 1.908] [0.4121 0.116] [0.3125 0.993] [124.1 63.16] [0.0178–0.0056] 

rule 2 [8.961 72.5] [0.145 0.0147] [0.0431 0.0564] [4.056 32.8] [5.582 5.9] [0.6671 3.193] [0.4413 0.184] [0.3711 1.118] [124.1 73.68] [−0.0024 0.0103] 

Table 4. Consequent parameters of the optimum ANFIS structure for predicting HI 
 pi1 pi2 pi3 pi4 pi5 pi6 pi7 pi8 pi9 pi10 pi0 

rule 1 0.006527 −0.3871 0.6645 0.01995 −0.03556 −0.1573 −0.5607 −1.347 0.00004034 0.4428 4.374 

rule 2 0.01076 −2.698 −0.6902 0.01893 0.001488 −0.09745 −0.1325 −0.7119 −0.0001259 15.5 2.926 

For example, Rule 1 is as follows: 

Unlike the ANN model, the ANFIS model is robust that gives the same result in each run. The error criteria 

RMSE and R2 of the HI evaluation for the presented ANN and ANFIS models with training, testing and total dataset 

are given in Table 5. First the models are constructed with training dataset and then HI values are evaluated with 

trained model, and the RMSE is calculated. The purpose of doing training with 80% of dataset and remaining 20% of 

dataset for testing is for verification of the performance of the models. It can be seen from Table 5 that the error 

values for test dataset are close to the errors for train dataset. It proves the performance and accuracy of the models 

confronted with unseen test dataset. 

 

 

Table 5. RMSE of ANN and ANFIS models 
 Error criteria RMSE R

2
 

ANN train dataset 0.1657 0.9525 

test dataset 0.1804 0.9422 

total dataset 0.1688 0.9503 

ANFIS train dataset 0.1648 0.9529 

https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-smt.2016.0184#smt2bf00345-tbl-0003
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 Error criteria RMSE R
2
 

test dataset 0.1552 0.9592 

total dataset 0.1629 0.9536 

The low values of the RMSE and the R2 values close to unity in Table 5 show the accuracy of the presented 

models to calculate the transformer HI. It can be seen from Table 5 that ANFIS method produces superior results for 

train, test and total dataset. This better performance can be explained by the fact that ANFIS combines the learning 

capabilities of neural network and reasoning capabilities of fuzzy logic. Hence it has an extended prediction 

capability compared with ANN and fuzzy logic. 

To map the HI quantitative values into five qualitative condition categories [18, 43] to determine the overall 

health condition of each transformer, the HI values are normalised onto scale of 0 (completely degraded 

transformer) to 1 (perfect condition). Table 6 provides categories of HI values and correlates them to the failure 

probability and overall health condition of transformers. HI values are grouped into condition categories from ‘very 

good’ to ‘very poor’. 

Table 6. Transformer health condition based on the normalised HI value [18, 43] 

HI Condition Probability of failure Overall health condition 

0.85–1 very 

good 

low (0%) satisfactory condition of transformer for 

continuous operation 

0.7–

0.85 

good low but slightly increasing (less than 

1.6%) 

normal operation together with specific 

monitoring 

0.5–

0.7 

fair rapidly increasing but lower than 

probability at mean age (between 1.6% 

and 6.9%) 

increase diagnostic testing with strict 

overall monitoring 

0.3–

0.5 

poor higher than probability at mean age and 

increasing (between 6.9% and 14.2%) 

restricted operation, increased interval 

sampling, and detailed diagnostics 

0–0.3 very 

poor 

very high, more than double the 

probability at mean age (more than 

14.2%) 

critical and immediate planning for 

emergency major refurbishment or 

replacement 

The comparison of experimental normalised HI values provided by ITRI and those predicted by presented 

ANN and ANFIS models for 181 transformers of training datasets and 45 testing datasets are shown in Fig. 3. The 

horizontal dashed lines of Fig. 3 (which separate the HI ranges of Table 6) help to identify the health condition for 

each transformer of dataset (from ‘very good’ to ‘very poor’). 

5 Conclusion 

In this paper, two artificial intelligence models ANN and ANFIS are developed to determine a HI for 

transformers. The input parameters of the models are technical and economical parameters including oil 

characteristics and DGA related parameters and also maintenance and OCs and aging related parameters. The 

https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-smt.2016.0184#smt2bf00345-tbl-0005
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output parameter of the models is HI value. The proposed HI approach improves the quality of condition assessment 

of the transformer by combining results from various chemical and electrical tests, onsite inspections, and 

economical information regarding the transformer's maintenance and OCs. 

An experimental field dataset with technical test records and economical information for 226 transformers 

with different voltage levels and power ranges in different weather and operating conditions is provided by ITRI. The 

case study demonstrates the applicability of the developed intelligent models in determining the HI of the 

transformers. At first each model is trained with 181 datasets and then the performance of the model is tested on 

other 45 sets. The results show that ANFIS model provides more accurate and robust results comparing with the 

ANN model. By the way, the two models can give satisfactory results, but the ANFIS model is somehow superior. 

The condition of predicted HI and experimental HI for ANFIS and ANN are exactly the same for 80% of total 

226 datasets. Nevertheless, the results for the remaining 20% of dataset are not away from the diagonal grids 

(matched points) and they are located at the border of two adjacent conditions ranges. 

The developed transformer condition assessment strategies result in financial benefits with increased 

reliability, maximise the transformers availability, and allow the transformers to be in service beyond the expected 

design age. 
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