

Incidence of Neurosensory Disturbances Post-Orthognatic Surgery: ASystematic Review

*Inna Husnul Ibnu¹, M. Ruslin², Yossy Yoanita Ariestiana³

¹Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia

²Oral and Maxillofacial Surgeon, Hasanuddin University Hospital, Makassar, Indonesia ³Oral and Maxillofacial Surgeon, Hasanuddin University Hospital and Hasanuddin University Dental Hospital, Makassar, Indonesia

Abstract

Backgroud

One of the most frequent concern in performing orthognathic surgery is the occurence of neurosensory disturbance (NSD) post-surgery. Many studies have reported the incidence of various NSDs that could occur post-surgery. Clinicians should be aware of the risk of potential occurence of NSD by identifying risk factors and evaluating incidences by surgery type.

Objective

The aim of this study is to assess the incidences of NSD among different orthognatic surgery procedures. **Methods**

The literature search was performed on September 2021 through the following scientific databases: PubMed, Scopus, ScienceDirect, and Cochrane Library limited to articles published between the year 2000-2020. **Results**

A total of 869 records were found, 21 of which were included. Total sample size of the included studies were 8,891 patients from various countries. The orthognathic procedures of interest were BSSO only, BSSO with genioplasty, BSSO with Le Fort I osteotomy, BSSO in combination with Le Fort I osteotomy and genioplasty, SSO only, SSO with genioplasty, IVRO only, genioplasty only, and Le Fort I osteotomy only. Incidence of NSD is ideally assessed objectively and subjectively.

Conclussion

Incidence of NSD post-orthognathic procedure frequently comes from an insult to the inferior alveolar nerve. Current data showed that IVRO currently have the lowest incidence among other procedures and the highest incidence is BSSO combine genioplasty. Factors that are known to influence the incidence of NSD were age at the time of surgery, bone marrow space, length of mandible angle, prior history of another mandible procedures, type of material used to fixate the mandible during BSSO, and the surgeon's expertise and experience.

Keywords : BSSO, genioplasty, Le Fort I osteotomy, neurosensory disturbance, orthognathic surgery,SSODOI Number: 10.48047/nq.2022.20.19.NQ99141NeuroQuantology2022;20(19): 1536-1560

*Correspondence: <u>drginnaibnu@gmail.com</u>

INTRODUCTION

Orthognatic surgery is a combination of orthodontics and maxillofacial surgery that aims to correct dentofacial deformities that cannot be corrected by reguler orthodontics procedure.¹ The origin of orthognatic surgery was limited to only mandibular surgery with the first recorded orthognatic surgery was a surgery to correct malocclusion performed

using Hullihen's procedure which was carried out in 1849.² The most frequently used orthognatic surgeries are Le Fort I osteotomy because of it's versatility and allows the surgeon to movein all three planes.^{1,3} This procedure was first described in 1867 and it is used to treat class II and III malocclusions as well as dentofacial asymmetries.^{2,3} Bilateral sagital split osteotomy (BSSO) is a type of orthognatic surgery where the lower jaw is separated and repositioned. It was first described by Schuhardt in 1942 and now indicated to treathorizontal mandibular excess, deficiency, and/or asymmetry.^{2,4} Intraoral vertical ramus osteotomy (IVRO) is a procedure aimed to create a full thickness vertical osteotomy through the mandibular ramus posterior to the mandibular foramen and its used to treat horizontal mandibular excess, mandibular asymmetry, and correction of minor mandibular deficiency.⁵

Genioplasty is a procedure mainly used to correct chin deformity that consist of an osteotomy of inferior border of mandible that allows for three dimensional movement of thechin and positions it in its desired position. It was first done by extraoral approach and then modified into an intraoral approach with its recent advancement using 3D-printing that could improve the results of the intervention by a three-dimensional pre-operative simulation.⁶ One concern in performing orthognatic surgery is the occurence of postsurgeryneurosensory disturbance (NSD). Many study have reported the incidence of NSD after orthognatic surgeries. One study reported that NSD, measured by light touch sensation, of patients who underwent SSO had a worsening of sensation until 1 week post-surgery and only recovered after 1 month post-surgery.⁷ Another study is a comparison study comparingNSD among different procedures. IVRO is a procedure known to preserve inferior alveolar neurovascular bundle and one comparative study shows that IVRO have lower incidence of NSD when compared to BSSO.^{8,9} Considering NSD is a wellknown complication of orthognathic surgery, clinicians should be aware of the risk of potential occurence of NSD by identifying risk factors and evaluating incidences by surgery type. This paper aims to

systematically assess the incidences of NSD among different orthognatic surgery procedures.

METHODS

This review was conducted based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol.

The literature search was performed on September 2021 through following scientificdatabases: PubMed, Scopus, ScienceDirect, and Cochrane Library. The literature search onPubMed was performed using Medical Subject Headings (MeSH) search with the following keywords: ("orthognathic surgical procedures"[MeSH Terms]) AND ("peripheral nerve injuries"[MeSH Terms] OR "facial nerve injuries"[MeSH Terms] OR "mandibular nerve injuries"[MeSH Terms] OR "nerve injuries"). While the literature search on the other databases was performed using the following keywords: ("orthognathic surgery" OR "orthognathic procedures" OR "orthognathic") AND ("neurosensory disturbance" OR "nerve complication" OR "sensory disturbance" OR "sensory impairment" OR "sensory

elSSN 1303-5150

deficit" OR "nerve injury" OR "alveolar inferior nerve" OR "nerve palsy"). Manual handsearching was also performed to find relevant literatures that were not found using thekeywords.

The inclusion criteria were: (1) English language and human subjects articles; (2) The research subjects included patients post-orthognathic surgery (Le Fort I osteotomy, BSSO, IVRO, genioplasty and combination BSSO and genioplasty or IVRO and genioplasty); (3) Article published from 2000—2020; (4) Original studies using the following study designs: randomized or non-randomized controlled trial, clinical trial, prospective or retrospective cohort, case control, and case report; (5) Full-text availability;

(6) at least display percentage of NSD incidence at one of orthognathic surgery procedures (Le Fort I osteotomy, BSSO, IVRO, genioplasty, or combination BSSO and genioplasty or IVRO and genioplasty). The exclusion criteria were: (1) Review papers, editorial letters andmanuscripts; (2) Article not published in English; (3) Studies conducted on animals in vivoand/or in vitro; (4) Full-text unavailable; (5) Studies that heavily modify the standard orthognathic surgery procedures through techniques, instruments, or materials.

Risk of bias assessment for randomized controlled trial was conducted using Cochrane Risk of Bias tools that analyzed seven aspects of bias. Risk of bias on nonrandomized interventional studies were assessed using ROBINS-I tool. Risk of bias on observational studies were assessed using the Newcastle-Ottawa Scale (NOS). The risk of bias analysis in any found individual study were assessed using the Quality Apprisal of Case Series Studies Checklist (QACSS) by Institute of Health Economic (IHE), Edmonton, Canada.

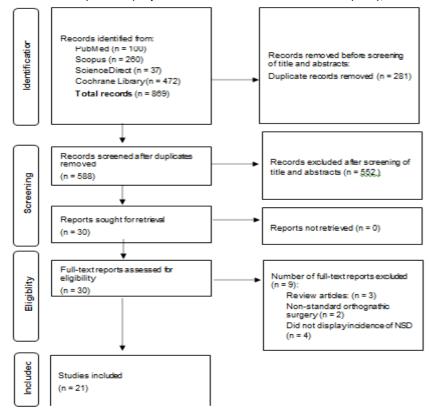


Figure 1. Flow-chart of the literature search strategy

RESULTS

The initial search resulted in a total of 869 records, 281 of which were duplicates. After deduplication, 588 records were screened of their title and abstracts and 552 records were excluded due to not fulfilling the inclusion criteria. Thirty records were sucessfully retrieved and assessed of their full-text report for eligibility. Nine records were excluded due to being review articles (3 records); using non-standard orthognathic surgery (2 records); or did not explicitly display incidence of NSD post-orthognathic surgery (4 records). The remaining 21 studies were included in this review. The PRISMA flowchart of literature search process is displayed in **Figure 1**.

Characteristics of included studies are displayed in Table 1. The result of critical appraisal of included studies based on critical appraisal for incidence studies are displayed in **Table 2**. Risk of bias assessment using ROBINS-I tool for non-randomized interventional studies are displayed in Table 3; using NOS for observational studies are displayed in Table 4; and using Cochrane Risk of Bias Tool for randomized controlled trial are displayed in **Table 5**. This review included studies from various countries: Italy (n = 4), United States (n=2), Sweden (n=3), Japan (n=2), Republic of Korea (n=3), Hong Kong (n=2), and one study each from Netherlands, Taiwan, Belgium, Austria, and Norway. The total sample size of the included studies are 8,891 patients that were, mostly, of equal male to female ratio. The orthognathic procedures of interest in the included were BSSO only, BSSO with genioplasty, BSSO with Le Fort I osteotomy, BSSO in combination with Le Fort I osteotomy and genioplasty, SSO only, SSO with genioplasty, IVRO only, genioplasty only, and Le Fort I osteotomy only. Most of the included studies evaluated post-orthognathic occurence of NSD by objective and subjective assessment. Objective assessment included two-point discrimination test, brush stroke detection, contact detection, or light touch, thermal testing, sharp blunt discrimination, and pin prick test. Majority of subjective asessment was performed through a questionnaire evaluating the patient's self-reported incidence of NSD, while others were judged by the clinician.

Table 1. Characterisics of included study

N o	Author (year)	Count ry	Study design	Sample size	Interve ntion of inter est	Res ults	Concl usion
					Geniopla		
					sty only	No persistent	Combination of
			Non-	50	or in	anesthesia in	genioplasty and SSO
1	Gianni et al	Italy	rando	patients	associati	all groups.	affects lip sensibility
	elSSN 1303-5150			C			www.neuroquantology.com

(2002)		mized	(24	on with	Normal or	more than each
		interv	mal	maxillary	slight	procedure alone.
		ention	e,	osteotom	hypoesthesia	Thermal sensation i
		al	26	y or	in group 2	less affected than
		study	fem	vertical	(17%)and	other sensations.
			ale)	mandibul	group 3 (30%);	Subjectively
				arramus	increased	sensory deficit was
				osteotom	sensory deficit	never considered
				y, SSO	in group 4	disabling by the
				only, SSO	(40%)	patients
				with		
				genioplas		
				ty		
				,		Older age and
		Rando			Highest	combination with
Van Sickels	Uni	mized	127	BSSO only	incidence of	genioplasty
et al (2002)	ted	contr	patients	,	nerve injury	increases the risk o
, , , , , , , , , , , , , , , , , , ,	Sta	ollled			occured in	a neurosensory
	tes	trial			younger age	injury. In older
		that			group <24	patients, large
					years (10.3%),	advancements
					24-35	further increase
					years (2.4%), >35	UNISTISK.
			121		years (4.5%)	
			patients			
			(61		Sensory	
		Droco	•		-	Combination with
	C l .	Prosp	male, 60		disturbance	Combination with
Al-Bishri et al			femal	alone	reported in	genioplasty did
(2004)	n	observ	e),	and in	48/131 (37%)	not increase the
		ationa	131	combina	operated sides	incidence of
		lstudy	sides	tion	in sagittal split	sensory
			of	with	osteotomies	disturbance
			SSO,	geniopla	alone, while	
			54	sty.	2054 (37%)	
			sides		operated sides	
			in		in combination	
			combi		with	
			nation		genioplasty.	
elSSN 1303-5150				0	w	ww.neuroquantology.com

				with geniopla sty			
4	Al-Bishri et al (2005)	Swede n	Prosp ective observ ationa Istudy	129 patients (56 male, 73 femal e), 212 sides	IVRO only, SSO only	Long lasting NSD reported in 7.5% through questionnaire, 3.8% through record after intraoral vertical ramus osteotomy and 11.6%	There is disagreement between judgement of surgeon and patient's opinion regarding NSD
			Retros	68		through questionnaire, 3.8% through records after SSO Incidence of reduced	Most important
5	Nesari et al (2005)	Swede n		patients (24 male, 44 femal	BSSO only	sensitivity: 84 sides (62%) at 2 months, 52 sites (38%) at 6	factors to post- operative nerve function are age, fixation method, and perioperative position of inferior alveolar nerve
6	Kobayashi et al (2006)	Japan	Observ ational study	66 patients (24 male, 42 femal e),	BSSO only intraoral inverted Lramus	Abnormal thresholds for 2 measurement techniques present more in SSRO group	Post-operative NSD of lower lip and chin occur more frequently in SSRO patients by surgeon
	elSSN 1303-5150			1	2	w	ww.neuroquantology.com

				132 sides	osteotom y	than ILRO and at 6 months post surgery	with less experience
7	Essick et al (2007)	Uni ted Sta tes	Rando mized contr ollled trial	184 patients (29 male, 71 femal e)	BSSO only	Impairment in contact detection and two point discrimination significantly differ at 6 months among groups.	Clinical judgement regarding sensory dysfunction after orthognathic surgery should not be based on threshold testing results without subjective report of altered sensation by the patient
					BSSO only,	8.0003.	
					BSSO and genioplas		Despite great
		So	Retros	301	ty, BSSO	The most	variety of
8	Kim et al	ut	pectiv	patients	and Le	common	reported post
-	(2007)	h	e	(141	Fort I	complication is	surgery
	、	Ко	observ	, male,	osteoto	sensory	complications, the
		re	ationa	160	my, BSSO	disturbance	frequency seems
		а	lstudy	female	and Le	196 cases	low thus
)	Fort I	(65.1%)	orthognathic
					osteoto		surgery appears
					my and		to be a safe
					genioplas		procedure
					ty,		
					genioplas ty only,		
					Le Fort		
					osteoto		
					my only		
				91		Long lasting	
				patients		NSD occur in	
			Retros	(38	BSSO	27 cases (30%)	There was no
9	Wijbenga et	Nether	-		only and	in BSSO group	significant
	al (2009)	lands	е	female	distracti	with overall	difference in
	elSSN 1303-5150				5	w	ww.neuroquantology.com

			observ ationa Istudy), 182 inferio r alveola r nerve	on osteoge nesis only	prevalence of 8% and 21 cases (23%) in distraction osteogenesis group with overall prevalence of 10% Objective measurement found pollogion	objectively measured subjectively reported between grou Percentage of	
10	D'Agostino et al (2010)	Italy	Retros pectiv e observ ationa Istudy	50 patients (16 male, 34 femal e), 100 nerve s	BSSO only	found no lesion in 52% of nerves, and significant lesion in 24% nerves. Subjective evaluations found 74% described the discomfort as "absent to mild"/"mild to moderate", 10% as "moderate to serious", and 4% as "serious"	significant ner lesion is relativ low, and capa central nervou system to compensate o for functional due to nerve l was confirmed between obje and subjective evaluations	vely city of us r hide deficit esions ł ctive
11	Choi et al (2010)	Taiwa n	Retros pectiv e observ ationa Istudy	3,105 patients	SSO of the man dible	6 patients (0.1%) of postoperative unilateral facial nerve palsy were reported	Most facial ne palsy post- mandibular SS caused by neurapraxia o axonotmesis o nerve compre or traction, complete reco can be expect	SO are r lue to ssion overy

elSSN 1303-5150

							conservative
							management is
							recommended
					BSSO	Sensory	Altered sensation
					only,	alteration	after orthognathic
		So	Retros	47	BSSO and	occured at the	surgery may be an
12	Kim et al	ut	pectiv	patients	geniopla	lip (27.3%) and	unavoidable
	(2011)	h	e	(26	sty, BSSO	chin 55.7%).	complication, but
		Ко	observ	mal	and Le	Visual analog	may resolve
		re	ationa	e <i>,</i>	Fort I,	scale for	spontaneously with
		а	lstudy	21	BSSO	postoperative	time. It is associated
				fem	and Le	altered	with concurrent
				ale)	Fort I	sensation	genioplasty but not
					and	in 1, 3, and 6	age or concurrent
					genio	months were	maxillary surgery.
					plast	significantly	
					у	different.	

1 3	Yamauchi et al (2012)	Japan	Prosp ective observ ationa Istudy	30 patients (9 mal e, 21 fem ale)	BSSO only	NSD occured on 15 sides (25%) at 1 month, 9 sides (15%) at 3 months, 7 sides (11.7%) at 6 months postoperative ly	The frequency of NSD post-BSSO depend on position of mandibular canal and length of mandibular angle. Lateral course of mandibular canal, and long mandibular angle has a high risk of injury to inferior alveolar nerve.
1 4	lanetti et al (2013)	Italy	Retros pectiv e observ ationa Istudy	3,236 patients (1,319 male, 1,917 female)	Majority BSSO and Le Fort I osteoto my, Le Fort I only, BSSO only	Most frequent complication was mandibular nerve sensory deficit (19%), irreversible in 2% of cases.	Orthognathic surgery complications are rare and are considered surgical mistakes related to surgeon's experience or real complications to orthognathic surgery
1 5	Politis et al (2013)	Belgiu m	Retros pectiv e observ ationa Istudy	163 patients (63 male, 100 female)	SSO only	self-reported alteration in sensibility was 15.1%(49/324; 13% ont he right side, 17.3% on the left). Of 16 patients (9.9%) with hypoesthesia on the right side and 25	Age and genioplasty were significant pedictors of hypoesthesia. A 1 year increase in age increased the odds of hypoesthesia by 5%. Concocurrent genioplast had 4.5 times higher odds

elSSN 1303-5150

					BSSO only,	patients (15.4%) on the left, 10 experienced bilateral hypoesthesia.	of hypoesthesia.
					BSSO only, BSSO	Normal	NSD of inferior
			Retros	128	+ Le Fort	subjective	alveolar nerve after
1	Bruckmoser	Austri	pectiv	patients		sensibility	BSSO is influenced
6	et al (2013)	а	e observ	(44 male <i>,</i>	osteoto my,	found in 74.6% of the regions	by age, age and total operating time.
			ationa	84	BSSO	after 6 months	Higher incidence
			lstudy	femal	+	and 77.2%	occur on chin region.
				e)	geniopla	after	
					sty, BSSO +	12 months.	
					Le Fort I		
					osteoto		
					my + geniopla		
					sty		
					-	Injury rate of	
			Retros	168	BSSO	inferior alveolar	Patients with
1 7	Choi et al (2013)	So ut	pectiv e	patients (26	only or BSSO +	nerve in patients with	history of mandibular
,	(2013)	h	observ	male,	Le Fort I	history of	contouring
		Ко	ationa	142	osteoto	mandible	surgery had a
		re	lstudy	female	my	contouring was	significantly
		а)		3 cases (11.5%) and primary	greater risk of inferior alveolar
						SSO patients 5	nerve injury
						cases (1.6%).	
						Incidence of NSD after	
						maxillary	
			Retros	238		procedures (Le	Age is a short term
1	Alolayan et	Hong	pectiv	patients	SSO	Fort I	(<24 months) risk

elSSN 1303-5150

www.neuroquantology.com

8	al (2014)	Kong	e observ ationa Istudy	(90 male, 148 femal e), 476 sides	only, Le Fort I osteoto my only	osteotomy) were 16.2%, 13%, and 9.8% at postoperative 6, 12, and 24 months respectively. While after mandibular procedures at postoperative 6, 12, and 24 months were 35.4%, 36.6%, and 34.6% respectively.	factor to NSD post- orthognathic surgery, and specific mandibular procedures have higher risk of NSD
1 9	Hågensli et al (2014)	Norwa y	Retros pectiv e observ ationa Istudy	38 patients (12 mal e, 26 fem ale)	BSSO only	had normal/almost normal sensation to the lower lip/chin, 50% had neurosensory alterations on the side to which the chin was deviating, compared to 28.9% patients affected on the opposite side	Correction of mandibular assymetry by BSSO is stable, rotation of the distal segment during surgery may increase risk of sensory impairment on the deviating side

2 0	Alolayan et al (2017)	Hong Kong	Prosp ective observ ationa Istudy	66 patients (23 male, 43 femal e), 132 sides	SSO or IVRO, and anterior mandibul ar surgery (anterior subapical surgery and/or genioplas ty) or combinat ion of both	Overall occurence of NSD 78.8% at 2 weeks, 64.4% at 6 weeks, 55.3% at 3 months, 34.8% at 6 months, 19.7% at 1 year, 13.8% at 2 years	The severity of NSD reduced over time in the first 2 post- operative years. Highest incidence occur using combination of ramus surgery (IVRO/SSO) and anterior mandibular surgery at post- operative 3 months. Age, gender, and surgeon experience were not risk factors. Inferior alveolar
2 1	Zaroni et al (2019)	Italy	Retros pectiv e observ ationa Istudy	485 patients (170 male, 315 female),	BSSO only and Le Fort I osteoto my only	Total of 19.2% complications were reported, 9.6% of which were inferior alveolar nerve injury	nerve injury is one of the most prevalent complication in orthognathic surgery and seem to be related to gender, duration and number of surgery, surgical site, and type of osteotomy.

Bilateral sagital split osteotomy (BSSO), sagital split osteotomy (SSO), intraoral vertical ramus osteotomy (IVRO), neurosensory disturbance (NSD)

Table 2. Critical appraisal of included studies based on critical appraisal for incidence studies

Critical Appraisal

No Author (year)					Was				
(year)					the		Was		
	Was	Were		Were	data	Were	the		Was th
	the	study	Was	the	analy	valid	condit	Was	respon
	sampl	partic	the	study	sis	metho	ion	there	erate
	e	ipant	sam	subje	cond	ds	measu	appr	adequa
	frame	S	ple	cts	ucted	used	red in	opria	e, and i
	appro	samp	size	and	with	for	а	te	not, wa
	priate	led in	ade	the	suffic	the	standa	statis	the low
	to	an	quat	settin	ient	identif	rd,	tical	respons
	addre	appr	e?	g	cover	ication	reliabl	analy	e rate
	ss the	opria		descri	age	of the	e way	sis?	manage
	target	te		bed	ofthe	condit	, for all		d
	popul	way?		in	identi	ion?	partici		approp
	ation?			detail	fied		pants?		ately?
				?					
					sampl	e?			
. Gianni et al	Ye	Uncl	Uncl	Yes	Ye	Yes	Yes	Yes	Yes
(2002)	S	ear	ear		S				
Van Sickels et a	l Ye	Yes	Uncl	Yes	Ye	Yes	Yes	Yes	Yes
(2002)	S		ear		S				
Al-Bishri et al	Ye	Uncl	Uncl	Yes	Ye	Uncl	Uncl	No	Yes
(2004)	S	ear	ear		S	ear	ear		
Al-Bishri et al	Ye	Uncl	Uncl	Yes	Ye	Uncl	Uncl	No	Yes
(2005)	S	ear	ear		S	ear	ear		
Nesari et al	Ye	Uncl	Uncl	Yes	Ye	Uncl	Uncl	Yes	Yes
(2005)	S	ear	ear		S	ear	ear		
6 Kobayashi et al		Uncl	Uncl	Yes	Ye	Yes	Yes	Yes	Yes
(2006)	S	ear	ear		S			\ <i>\</i>	
' Essick et al	Ye	Uncl	Uncl	Yes	Ye	Yes	Yes	Yes	Yes

elSSN 1303-5150

www.neuroquantology.com

	(2007)	s	ear	ear		S				
8	Kim et al	Ye	Uncl	Uncl	Yes	Ye	No	No	No	Yes
	(2007)	S	ear	ear		S				
9	Wijbenga et al	Ye	Uncl	Uncl	Yes	Ye	Yes	Yes	Yes	Yes
	(2009)	S	ear	ear		S				
1	D'Agostino et al	Ye	Yes	Yes	Yes	Ye	Yes	Yes	No	Yes
0	(2010)	S				S				
1	Choi et al	Ye	Yes	Uncl	Yes	Ye	Yes	Yes	No	Yes
1	(2010)	S		ear		S				
1	Kim et al	Ye	Uncl	Uncl	Yes	Ye	Yes	Yes	Yes	Yes
2	(2011)	S	ear	ear		S				
1	Yamauchi et al	Ye	Uncl	Uncl	Yes	Ye	Yes	Yes	Yes	Yes
3	(2012)	S	ear	ear		S				
1	lanetti et al	Ye	Yes	Uncl	Yes	Ye	No	No	No	Yes
4	(2013)	S		ear		S				
1	Politis et al	Ye	Uncl	Uncl	Yes	Ye	No	Yes	Yes	Yes
5	(2013)	S	ear	ear		S				
1	Bruckmoser et	Ye	Uncl	Uncl	Yes	Ye	Yes	Yes	Yes	Yes
6	al (2013)	S	ear	ear		S				
1	Choi et al	Ye	Uncl	Uncl	Yes	Ye	Yes	Yes	Yes	Yes
7	(2013)	S	ear	ear		S				
1	Alolayan et al	Ye	Uncl	Uncl	Yes	Ye	Yes	Yes	Yes	Yes
8	(2014)	S	ear	ear		S				
1	Hågensli et al	Ye	Uncl	Uncl	Yes	Ye	Yes	Yes	Yes	Yes
9	(2014)	S	ear	ear		S				
2	Alolayan et al	Ye	Uncl	Uncl	Yes	Ye	Yes	Yes	Yes	Yes
0	(2017)	S	ear	ear		S				
2	Zaroni et al	Ye	Uncl	Uncl	Yes	Ye	No	No	Yes	Yes
1	(2019)	S	ear	ear		S				

elSSN 1303-5150

www.neuroquantology.com

No Author	Pre-Intervention Intervention Post-Inter			At rvention				- Overall risk	
(year)	Bias due to	Bias due to	Bias due to	Bias due to	Bias due data	Bias due to	Bias due to	of bias	
1 Gianni et al (2002)	confou _{Low risk} nders	selecti _{Low risk} on of partici pants	cation Low risk of	n from _{Low risk} intende d	miss ^{Low risk} ing	outco Low risk me measur ement	on of _{Low risk} report ed	Low risk	

Table 3. Results of ROBINS-I tool risk of bias assessment for non-randomized interventional studies

Table 4. Results of NOS risk of bias assessment of observational studies

		Selection				Comparat	Outcome		
No	Author				Abse	Able to			Ade
(ye	ar)	No	No	Meas	nce	compare	Blinde	Ade	quat
		bias	bias	urabl	۳	interventi	d	quat	e ^{atients}
1	Al-Bishri et al (2004)	dư⁄e∘to	dư ề to	e Yes	oùtc	on ₩ith	assess	e Yes	folto
2	Al-Bishri et al (2005)	coľnfo	selecti	inťerv	ome	stừdy	ment	follto	w ^v ี่นp
3	Nesari et al (2005)	un ^v ðer	on of	entio	prìor	design/an	ðf	W ^{Yes}	nửm
4	Kobayashi et al (2006)	S Yes	partici	n ^{Yes}	ťð	al∳sis	outco	upes	běř
5	Kim et al (2007)	Yes	pansts	Yes	No	No	me≀	dura	of ^{Yes}
6	Wijbenga et al (2009)	Yes	Yes	Yes	No	No	No	tion	Yes
7	D'Agostino et al (2010)	Yes	Yes	Yes	No	No	No	Yes	Yes
8	Choi et al (2010)	Yes	Yes	Yes	No	No	No	Yes	Yes
9	Kim et al (2011)	Yes	Yes	Yes	No	No	No	Yes	Yes
10	Yamauchi et al (2012)	Yes	Yes	Yes	No	No	No	Yes	Yes
11	Ianetti et al (2013)	Yes	Yes	Yes	No	No	No	Yes	Yes
12	Politis et al (2013)	Yes	Yes	Yes	No	No	No	Yes	Yes
13	Bruckmoser et al (2013)	Yes	Yes	Yes	No	No	No	Yes	Yes
14	Choi et al (2013)	Yes	Yes	Yes	No	No	No	Yes	Yes
15	Alolayan et al (2014)	Yes	Yes	Yes	No	No	No	Yes	Yes
16	Hågensli et al (2014)	Yes	Yes	Yes	No	No	No	Yes	Yes
17	Alolayan et al (2017)	Yes	Yes	Yes	No	No	No	Yes	Yes
18	Zaroni et al (2019)	Yes	Yes	Yes	No	No	No	Yes	Yes

elSSN 1303-5150

		Selection bias		Perform ance bias	Detecti on bias	Attriti on bias	Reporti ng bias	
No	Author (year)	Ran dom		Blindin g of	Blindin g of			Othe r bias
		sequ	Alloc	particip	outco	Inco	Sele	
		ence	ation	ants	me	mplet	ctiv	
		gene	conce	and	assess	е	е	
		ratio	almen	person	ment	outco	repo	
		n	t	nel		me	rting	
						data		
1	Van Sickels	Low	High	High risk	High	Low	Low	Low
	et al (2002)	risk	risk		risk	risk	risk	risk
2	Essick et al	Low	Low	Low risk	Low	Low	Low	Low
	(2007)	risk	risk		risk	risk	risk	risk

Table 4. Results of Cochrane Risk of Bias Tool assessment for randomized controlled trial

 studies

DISCUSSION

In this review, reported incidence of NSD mostly comes from injury of the inferior alveolar nerve. Alveolar nerve are separated into two based on their branching origin. Maxillary nerve will branch into superior alveolar nerve that innervates maxillary region that includes maxillary sinus, premolar, inferior meatus, cheeks, and gingivae. Mandibulary nerve will branch into inferior alveolar nerve that innervates mandible gingivae and will also branch into mylohyoid nerve and mental nerve. Inferior alveolar nerve provides sensory innervation to lower teeth, gingivae, lower lip and chin.¹⁰ Some studies assessed the incidence of NSD in a general population of patientst that underwent orthognatic surgery. Alolayan, et al reported that in a population with patient that underwent BSSO, IVRO, and anterior mandibular surgery, the overall incidence of 2 weeks NSD post-surgery is 78.8% and decreased into 34.8% in 6 months and only 19.7% and 13.8% had NSD in 1 year and 2 years post-surgery.¹¹ Bruckmoser, et al reports NSD incidence in a population of patients that underwent BSSO, Le Fort I, Genioplasty, or BSSO combined with either Le Fort I osteotomy or genioplasty. In this study, NSD incidence at 6 months post-surgery is reported to be 25.4% with 12% reported severe NSD. NSD incidence at 12 months is 22.8% with 10.7% having a severe NSD.¹² Both Alolayan, et al and Bruckmoser, et al reports the

eISSN 1303-5150

almost same percentage of NSD incidence (34.8% vs 25.4% at 6 months and 19.7% vs 22.8% at 12 months) because both have relatively similar sample size, 132 sides and 154 patients.^{11,12} This number seems to be smaller when extracted from larger sample size. Zaroni, et al assessed the complication incidence including NSD in 485 patients who underwent orthognatic surgery between 2008 and 2014. In this study, NSD incidence is reported to be just 9.6%.¹³ lannetti, et al with 3236 patients from 1989-2009 in Rome that underwent orthognatic surgery showed that NSD incidence is 19.03% with 80.19% of patients with NSD resolved within the first 6 months.¹⁴ It is shown that the overall incidence of NSD post-orthognatic surgeries highly varied from one study to another.

BSSO currently have the most abundant data regarding it's incidence of NSD. Current data showed that NSD incidence right after BSSO surgery ranged from 15.1% to 64% and decreased to 3.5%-24% in more than 1 year.^{15–21} For comparison, another systematic review by Jędrzejewski, et al with more than 44 studies included showed that NSD incidence rate in a non-specific timestamp is 50%.²² Al-Bishri reports that NSD incidence are different when assessed subjectively using questionnaire and the clinician's judgement or objectively by screening patient's medical record patients NSD status (by combining subjective judgement and objective sensory tests). In this study, NSD incidence immediately after surgery in subjective and objective measurement are 29% and 38.4% respectively while after 1 year (long-lasting NSD) the incidence are 11.6% and 8.1% respectively.¹⁸ In this study it seems that the patients often underestimate and overlook the sensory disturbance while after 1 year patients tend to overestimate their NSD. One systematic review assessed the difference in these two NSD measurement methods. Colela, et al measure NSD incidence both subjectively and objectively, and measure the Cohen's kappa between the two to measure its interchangeability. This study shows that subjective measurement is not accurate enough when used to measure NSD until 1 week post-surgery. Only until 2 weeks post-surgery that subjective measurement of NSD can safely replace objective measurement while maintaining accuracy. The more time passes, the more accurate subjective measurement become when compared to objective measurement as the gold standard.²³ Based on that study, Al-Bishri, et al's measurement for NSD incidence right after surgery is 38.4% while the 29% incidence measured with subjective methods were not accurate.¹⁸ Chortrakarnkij, et al used BSSO with a modified Obwegeser-Dal Pont technique that found it could achieve low rates of inferior alveolar nerve exposure and injury.¹⁹ Similarly, D'Agostino, et al measured NSD incidence in BSSO not in a conventional Obwegeser's method, instead using Hunsuck's method. In this study however, the incidence of NSD is relatively no different from other studies with the percentage of NSD being 48% which is similar to 50% incidence reported by Jedrzejewski, et al in a systematic review.^{20,22}

There are one study in this review that reported the incidence of facial nerve palsy

elSSN 1303-5150

after orthognatic surgery. Choi, et al reported six unilateral facial nerve palsy cases in 3,105 patients (0.1%) after orthognatic surgery with 1 patient diagnosed as Bell's palsy. Among those 6 patients; 5 had a complete recovery after 6 months and 1 patient had a permanent impairment of frontal branch of the facial nerve.²⁴ The frequency reported by Choi, et al seems to be higher when compared to a larger study presented in another systematic review. Bowe, et al reported in a systematic review that among 7,492 osteotomy sides that includes

both BSSO and IVRO procedures, risk of temporal facial nerve palsy is 0.30 per 100 nerves while risk of permanent facial nerve palsy is 0.06 per 100 nerves. This study also stated that incidence of permanent nerve palsy is significantly higher in IVRO than in BSSO while there is no significant different in the incidence of temporary nerve palsy.²⁵ Facial nerve palsy, as a reported NSD, is considered a rare complication in orthognatic surgery. Facial nerve palsyafter orthognatic surgery are likely due to facial nerve compression or traction as argued by Choi, et al.²⁴ Bisatto, et al elaborated that facial nerve compression is probably due to the close relationship between the posterior border of the mandibular ramus and the facial nerve in the open-mouth position adopted for BSSO.²⁶ Another possible etiology of facial nerve palsy after orthognatic surgery are incomplete nerve transection, nerve traction, and nerve ischemia due to excessive vasoconstrictor injection in perimandibular region.²⁷

IVRO is an orthognatic surgery known to better preserve inferior alveolar nerve as demonstrated by Caldwell, et al.⁸ Based on this, NSD incidence should be lower in IVRO when compared to BSSO or other types of orthognatic surgery. All of the study included in this review showed that NSD incidence of IVRO is lower than other orthognatic surgeries. Al-Bishri, et al previously described the incidence of NSD in IVRO and SSO both measured subjectively and objectively. In this report, NSD incidence of IVRO is lower than BSSO both immediately after surgery and 1 year after surgery. NSD incidence of IVRO immediately after surgery measured subjectively and objectively are 10.4% and 7.5% respectively, while NSD incidence 1 year after surgery are 7.5% and 3.8% respectively.¹⁸ Alolaya, et al also previously described NSD incidence in a sample of patients whounderwent isolated IVRO surgery and they showed that NSD incidence of IVRO alone is lower in overall NSD incidence of all orthognathic surgeries and also lower than IVRO combined with genioplasty. This study showed that NSD incidence after 2 weeks post-IVRO is 65.3%, decreased into 23% after 6 months, and 0% after 2 years.¹¹ Data for incidence of NSD after IVRO ranged from 7.5%-65.3%, however these data were extracted from only two studies and therefore insufficient. More research is needed to properly establish the accurate number. All of the study included agreed that NSD incidence after IVRO is lower than BSSO. The preservation of inferior alveolar nerve is also the advantage of IVRO when compared to BSSO.

elSSN 1303-5150

Genioplasty are often studied together with BSSO and compared between each procedure alone or comparing it to other combination procedures. In a study by Vansickels, et al comparing BSSO (fixation using wired or rigid fixation) and combination of BSSO and

genioplasty, they showed that sensory impairment degree is higher in the combination group only until 1 week post-surgery. There is no significant difference in the degree of NSD in both group after 1 week post-surgery. The assessment of sensory function was done using light touch and brush stroke methods.²⁸ In a study by Wijbenga, et al, NSD incidence after surgery seems to be lower in genioplasty group (57%) than in BSSO group (68%). In this study, the most common site for sensory impairment is in both chin and lower lip with hypoesthesia being the most common form of sensory impairment.²⁹ In line with Wijbenga, et al, a study by Gianni, et al reports a significant difference between genioplasty and BSSO. In this study, NSD is in the form of slight hypoesthesia reported in genioplasty group to be 17% while in BSSO group is 30%. Concomitant SSO with genioplasty increased its incidence to 40%. While BSSO is associated with higher incidence rate, this study shows that tactile sensitivity, location test, and sharp-blunt discrimination decreased more in genioplasty than in BSSO. There are no difference in two-point discrimination and thermal sensitivity.³⁰ In contrast, Al-Bishri, et al reports no significant difference in NSD incidence between BSSO ony and BSSO and genioplasty combination surgerv.³¹ Conflicting data also reported by Alolayan, et al. They reported the incidence of NSD in BSSO is lower than genioplasty (2.1% and 10.9% respectively). This study agrees that combination surgery with BSSO increase NSD incidence (23.5%).³² For comparison, a systematic review by McLeod, et al also showed that combination of BSSO and genioplasty significantly increase NSD incidence when compared to BSSO alone.³³ In relation to IVRO, Alolayan, et al showed that combination surgery of IVRO and genioplasty have higher NSD incidence (83.8%) than in genioplasty alone (50%). They also showed that recovery of NSD in IVRO and genioplasty combination is significantly better than BSSO and genioplasty because in BSSO and geniopolasty combination there seem to be no decrease in incidence between 2 week post- surgery and 3 months post-surgery, thus suggesting a delayed recovery in this group.¹¹ Based on these studies, NSD incidence after genioplasty ranged from 10.9%-57%. While comparison to BSSO still cannot be established due to conflicting result, the fact that combination surgery of BSSO and genioplasty had higher NSD incidence seems to be already established. Higher NSD incidence were also observed when genioplasty is combined with IVRO but only one paper included in this review studied this combination.

Le Fort I osteotomy is different in all other three procedure because Le Fort I osteotomy procedure focused in manipulating maxilla while the other three are focused on mandible. One study by Alolayan, et al reported that NSD incidence after Le Fort I

eISSN 1303-5150

osteotomy is 24.4% and this number increased when segmental pieces involved in Le Fort I

increased. This study reported that in 2 segmental pieces Le Fort I Osteotomy, NSD incidence increases to 25.2% while in 4 segmental pieces it increases to 50.4%.³² Another study by Zaroni, et al do not specify NSD incidence and instead reported the all incidence of complications that includes hemorrhage, malocclusions, NSD, infection, etc. In this study, complication rate of Le Fort I osteotomy is 17.4%.¹³ In a retrospective study done by Kim, et al it is reported that Le Fort I osteotomy's incidence of NSD is 33.3%. Le Fort I osteotomy seems to have lower overall complication rate and NSD incidence when compared to BSSO.^{13,21} There are insufficient data measuring NSD incidence in Le Fort I specifically and most data that include Le Fort I osteotomy are presented in a pooled data of all orthognatic surgery. In this review, there are only two studies reporting Le Fort I osteotomy's incidence of NSD and one study reports its overall complication rate. Only one paper studied factors influencing NSD incidence after Le Fort I osteotomy and that is the relationship between Le Fort I osteotomy segmental pieces and NSD incidence. Currently, there is a lack of research data assessing NSD incidence after Le Fort I osteotomy and factors affecting it.

There are several factors that were found to affect NSD incidence after orthognatic surgeries. Some studies showed the correlation of age and NSD incidence after orthognatic surgeries. Nesari, et al showed that NSD incidence in a population of patient under 30 yearsold that underwent BSSO is significantly lower in a group of patients over 30.¹⁵ Bruckmoser, et al with a sample of patients who underwent mixed BSSO or combined with either Le FortI osteotomy or genioplasty showed that positive correlation of age and NSD incidence are observed both at 6 months and 12 months post-surgery.¹² In a population of patients who underwent Le Fort I osteotomy, BSSO, and genioplasty, Alolayan, et al showed NSD correlates with higher age after maxillary procedure at 6 moths and 12 months post-surgery and in mandible procedures at 6 months postsurgery.³² Politis, et al showed that in patient underwent genioplasty, age is a significant predictor for the incidence of hypoesthesia and a 1 year increase in age at surgery increased odds of hypoesthesia by 5%.¹⁶ All of these studies described the positive correlation between age and NSD incidence after orthognatic procedure both in a population of a specific type of orthognatic surgery or the general population. Two study agrees that this correlation are observed until 12 months after the procedure. Another factors affecting NSD incidence after orthognatic surgeries are bone marrow space³⁴, length of mandible angle³⁴, prior history of another mandible procedures³⁵, type of material used to fixate the mandible during BSSO^{12,15}, and surgeon's expertise and experience.³⁶ All of these factors still lack research and thus still to early to draw conclusionfrom it.

elSSN 1303-5150

CONCLUSION

Incidence of NSD post-orthognathic procedure frequently comes from an insult to the inferior alveolar nerve. Current data showed that IVRO currently have the lowest incidence among other procedures and the highest incidence is BSSO combine with genioplasty. Factors that are known to influence the incidence of NSD were age at the time of surgery, bone marrow space, length of mandible angle, prior history of another mandible procedures, type of material used to fixate the mandible during BSSO¹, and surgeon's expertise and experience. More research are needed to properly establish the accurate percentage and correlation especially in assessing NSD incidence after Le Fort I osteotomy and other unknown factors that may influence the sensory outcome after orthognatic surgery.

REFERENCE

- 1. Larsen MK. Indications for Orthognathic Surgery-A Review. J Oral Heal dan Dent Manag. 2017;16(2).
- 2. Steinhauser EW. Historical development of orthognathic surgery. J Cranio-Maxillo-Facial Surg. 1996;24(4):195–204.
- 3. Buchanan PE, Hyman CH. LeFort I osteotomy. Semin Plast Surg. 2013;27:149–54.
- 4. Monson LA. Bilateral sagittal split osteotomy. Semin Plast Surg. 2013;27(3):145–8.
- McKenna SJ, King EE. Intraoral Vertical Ramus Osteotomy Procedure and Technique. Atlas Oral Maxillofac Surg Clin North Am [Internet]. 2016;24(1):37–43. Available from: http://dx.doi.org/10.1016/j.cxom.2015.10.002
- 6. Oth O, Durieux V, Orellana M, Glineur R. Genioplasty with surgical guide using 3D-printing technology : A systematic review. 2020;12(1).
- 7. Degala S, Shetty SK, Bhanumathi M. Evaluation of Neurosensory Disturbance Following Orthognathic Surgery : A Prospective Study. 2015;14(1):24–31.
- 8. CALDWELL JB, LETTERMAN GS. Vertical osteotomy in the mandibular raml for correction of prognathism. J Oral Surg (Chic). 1954 Jul;12(3):185–202.
- He P, Iwanaga J, Matsushita Y, Adeeb N, Topale N, Tubbs RS, et al. A Comparative Review of Mandibular Orthognathic Surgeries with a Focus on Intraoral Vertico-sagittal Ramus Osteotomy. Cureus. 2017;9(12).
- 10. JD N, H. D. Anatomy, Head and Neck, Alveolar Nerve. [Updated 2021 Aug 11]. In:

StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK546712/

- Alolayan AB, Leung YY. Resolution of neurosensory deficit after mandibular orthognathic surgery: A prospective longitudinal study. J Cranio-Maxillofacial Surg [Internet]. 2017;45(5):755–61. Available from: http://dx.doi.org/10.1016/j.jcms.2017.01.032
- Bruckmoser E, Bulla M, Alacamlioglu Y, Steiner I, Watzke IM. Factors influencing neurosensory disturbance after bilateral sagittal split osteotomy: Retrospective analysis after 6 and 12 months. Oral Surg Oral Med Oral Pathol Oral Radiol [Internet]. 2013;115(4):473–82. Available from: http://dx.doi.org/10.1016/j.oooo.2012.08.454
- Zaroni FM, Cavalcante RC, João da Costa D, Kluppel LE, Scariot R, Rebellato NLB. Complications associated with orthognathic surgery: A retrospective study of485 cases. J Cranio-Maxillofacial Surg [Internet]. 2019;47(12):1855–60. Availablefrom: https://doi.org/10.1016/j.jcms.2019.11.012
- 14. Iannetti G, Fadda TM, Riccardi E, Mitro V, I PU. Our experience in complications of orthognathic surgery : a retrospective study on 3236 patients. 2013;(3):379–84.
- Nesari S, Kahnberg KE, Rasmusson L. Neurosensory function of the inferior alveolar nerve after bilateral sagittal ramus osteotomy: A retrospective study of 68patients. Int J Oral Maxillofac Surg. 2005;34(5):495–8.
- Politis C, Sun Y, Lambrichts I, Agbaje JO. Self-reported hypoesthesia of the lower lip after sagittal split osteotomy. Int J Oral Maxillofac Surg [Internet].
 2013;42(7):823–9. Available from: http://dx.doi.org/10.1016/j.ijom.2013.03.020
- Hågensli N, Stenvik A, Espeland L. Asymmetric mandibular prognathism: Outcome, stability and patient satisfaction after BSSO surgery. A retrospective study. J Cranio-Maxillofacial Surg [Internet]. 2014;42(8):1735–41. Available from: http://dx.doi.org/10.1016/j.jcms.2014.06.008
- Al-Bishri A, Barghash Z, Rosenquist J, Sunzel B. Neurosensory disturbance after sagittal split and intraoral vertical ramus osteotomy: As reported in questionnaires and patients' records. Int J Oral Maxillofac Surg. 2005;34(3):247– 51.
- 19. Chortrakarnkij P, Lonic D, Lin HH, Yamaguchi K, Kim SG, Lo LJ. A modified technique of mandibular ramus sagittal split osteotomy for prevention of inferior

alveolar nerve injury: A prospective cohort study and outcome assessment. Ann Plast Surg. 2017;78(3):S108–16.

- D'Agostino A, Trevisiol L, Gugole F, Bondí V, Nocini PF. Complications of orthognathic surgery: The inferior alveolar nerve. J Craniofac Surg. 2010;21(4):1189–95.
- Kim YK, Kim SG, Kim JH. Altered sensation after orthognathic surgery. J Oral Maxillofac Surg [Internet]. 2011;69(3):893–8. Available from: http://dx.doi.org/10.1016/j.joms.2010.10.025
- 22. Jędrzejewski M, Smektała T, Sporniak-Tutak K, Olszewski R. Preoperative, intraoperative, and postoperative complications in orthognathic surgery: a systematic review. Clin Oral Investig. 2015;19(5):969–77.
- Colella G, Cannavale R, Vicidomini A, Lanza A. Neurosensory Disturbance of the Inferior Alveolar Nerve After Bilateral Sagittal Split Osteotomy: A Systematic Review. J Oral Maxillofac Surg. 2007;65(9):1707–15.
- Choi BK, Goh RCW, Chen PKT, Chuang DCC, Lo LJ, Chen YR. Facial Nerve Palsy After Sagittal Split Ramus Osteotomy of the Mandible: Mechanism and Outcomes. J Oral Maxillofac Surg [Internet]. 2010;68(7):1615–21. Available from: http://dx.doi.org/10.1016/j.joms.2010.01.010
- Bowe DC, Gruber EA, McLeod NMH. Nerve injury associated with orthognathic surgery. Part 1: UK practice and motor nerve injuries. Br J Oral Maxillofac Surg [Internet]. 2016;54(4):362–5. Available from: http://dx.doi.org/10.1016/j.bjoms.2016.01.026
- Bisatto NV, Andriola F de O, Barreiro BOB, Maahs TP, Pagnoncelli RM, Fritscher GG. Facial Nerve Palsy Associated With Orthognathic Surgery. J Craniofac Surg. 2020;31(6):e546–9.
- 27. Cousin GC. Facial nerve palsy following intra-oral surgery performed with local anaesthesia. J R Coll Surg Edinb. 2000 Oct;45(5):330–3.
- 28. Van Sickels JE, Hatch JP, Dolce C, Bays RA, Rugh JD. Effects of age, amount of advancement, and genioplasty on neurosensory disturbance after a bilateral sagittalsplit osteotomy. J Oral Maxillofac Surg. 2002;60(9):1012–7.
- 29. Wijbenga JG, Verlinden CRA, Jansma J, Becking AG, Stegenga B. Long-lasting neurosensory disturbance following advancement of the retrognathic mandible:

distraction osteogenesis versus bilateral sagittal split osteotomy. Int J Oral Maxillofac Surg. 2009;38(7):719–25.

- Gianni AB, D'Orto O, Biglioli F, Bozzetti A, Brusati R. Neurosensory alterations of the inferior alveolar and mental nerve after genioplasty alone or associated with sagittal osteotomy of the mandibular ramus. J Cranio-Maxillofacial Surg. 2002;30(5):295–303.
- 31. Al-Bishri A, Dahlberg G, Barghash Z, Rosenquist J, Sunzel B. Incidence of neurosensory disturbance after sagittal split osteotomy alone or combined withgenioplasty. Br J Oral Maxillofac Surg. 2004;42(2):105–11.
- 32. Alolayan AB, Leung YY. Risk factors of neurosensory disturbance following orthognathic surgery. PLoS One. 2014;9(3).
- 33. McLeod NMH, Bowe DC. Nerve injury associated with orthognathic surgery. Part
 2: Inferior alveolar nerve. Br J Oral Maxillofac Surg [Internet]. 2016;54(4):366–71.
 Available from: http://dx.doi.org/10.1016/j.bjoms.2016.01.027
- 34. Yamauchi K, Takahashi T, Kaneuji T, Nogami S, Yamamoto N, Miyamoto I, et al. Risk factors for neurosensory disturbance after bilateral sagittal split osteotomy based on position of mandibular canal and morphology of mandibular angle. J OralMaxillofac Surg [Internet]. 2012;70(2):401–6. Available from: http://dx.doi.org/10.1016/j.joms.2011.01.040
- 35. Choi BK, Lo LJ, Oh KS, Yang EJ. The influence of reduction mandibuloplasty history on the incidence of inferior alveolar nerve injury during sagittal split osteotomy. Plast Reconstr Surg. 2013;131(2):231–7.
- Kobayashi A, Yoshimasu H, Kobayashi J, Amagasa T. Neurosensory Alteration in the Lower Lip and Chin Area After Orthognathic Surgery: Bilateral Sagittal Split Osteotomy Versus Inverted L Ramus Osteotomy. J Oral Maxillofac Surg. 2006;64(5):778–84.

