A Study of Ws- Exact Sequence

Ashwani Kumar Garg

Abstract

In the context of group theory, a sequence The sequence is called exact if it is exact at each $\left\{\backslash\right.$ displaystyle $\left.\mathrm{G}_{-}\{\mathrm{i}\}\right\}$ for all $\{\backslash$ displaystyle $1 \backslash$ leqi<n\}, i.e., if the image of each homomorphism is equal to the kernel of the next. The sequence of groups and homomorphisms may be either finite or infinite.A similar definition can be made for other algebraic structures. For example, one could have an exact sequence of vector spaces and linear maps, or of modules and module homomorphisms.More generally, the notion of an exact sequence makes sense inany category with kernels and cokernels, and more specially in abelian categories, where it is widely used.

KeyWords:Study, Exact, Sequence.
DOI Number: 10.14704/NQ.2022.20.12.NQ77137
NeuroQuantology 2022; 20(12):1589-1592

Introduction

All rings in this paper are expected to be commutative with non-zero identity and all modules are unitary. The exact sequence has been used intensively in many disciplines, as commutative algebra. Consider a sequence of R modules and homomorphism. Then $\operatorname{Im} f=\operatorname{ker} g$. It is raising a question that; Standby a submodule U of C in place of the small submodule $\{0\}$ as superfluous. Davvaz and Parnian[2] introduced the concept of the chain U-complex. U-Homology, chain (U, U^{\prime}) - map, chain ($\mathrm{U}, \mathrm{U}^{\prime}$) -homology and U-factor. In this chapter, we introduced Ws - Exact sequence with the help of a particular condition of superfluous. We used means N is a submodule of M. A submodule of N of module M is claimed to be superfluous (small) $\mathrm{N} \ll \mathrm{M}$, if for any submodule K of $\mathrm{M}, \mathrm{N}+\mathrm{K}=\mathrm{M}$ implies that $\mathrm{K}=\mathrm{M}$.
Lemma 1.1[2]: Diagram of the module with exact rows and columns:

	0		0		0
	\downarrow		\downarrow		\downarrow
$0 \rightarrow$		$\xrightarrow{f^{\prime}}$	B'	$\xrightarrow{g^{\prime}}$	$\mathrm{C}^{\prime} \rightarrow 0$
		$\downarrow \alpha$		$\downarrow \beta$	$\downarrow \gamma$
$0 \rightarrow$		\xrightarrow{f}		\xrightarrow{g}	$\mathrm{C} \rightarrow 0$
		\downarrow		\downarrow	\downarrow
		0		0	0

Proof: (Obviously)
Proposition 1.1[2]: Let M be an R-module; then, $M \in C n$ There is a small submodule A of M such $\frac{M}{A} \in C$. $\frac{M}{A} \in C n$ for each small submodule A of M.
Proof: (Obviously)
Difinition 1.1[4]: A sequence of R-modules and Rhomomorphism. $\mathrm{Cn}+2 \xrightarrow{\partial \mathrm{n}-2} \mathrm{Cn}+1 \xrightarrow{\partial \mathrm{n}-1} \mathrm{Cn} \xrightarrow{\partial \mathrm{n}}$

Cn-1 \rightarrow \qquad is claimed to be Up- exact at $\mathrm{Cp}+1$ if, $\operatorname{Im} \partial \mathrm{n}+2=(\partial \partial \mathrm{n}-1)-1 \quad$ Un-1 \subset Cn-1, $((\partial \mathrm{n}+1)-$ $1(\partial n)-1(\partial n-1))$.
$\operatorname{Im} \partial \mathrm{n}+2=\{\ldots \mathrm{Up}+1, \mathrm{Un}, \mathrm{Un}-1 \ldots$.$\} . A U-exact$ sequence is a sequence Up- exact at each of its point.Module (Cs, Us, $\partial \mathrm{s}$) represent an Us-exact sequence and satisfying the condition $(\partial n \partial n+1) \subset$ Un-1. So, each Us-exact sequence such Un-1 $\subseteq \operatorname{Im}$ $\partial \mathrm{n} \partial \mathrm{n}-1$ is chain Us-complex. A chain ($\mathrm{C}, \mathrm{U}, \partial$) Ussequence if and only if $\mathrm{Hp}(\mathrm{C}, \mathrm{U}, \partial)=0, \forall \mathrm{p} \in \mathrm{Z}$.
Definition 1.2[4]: Let Us-exact sequence (C, U, ∂) is claimed to be isomorphic to exact sequence (C , U, ∂) if there is a chain Us U's -map F such Fp is an R-module isomorphism.
Proposition 1.2[4]: If two Us-exact and U's-exact sequences are isomorphic, then $U s \cong U$'s.

[^0]Proof: Let $0 \rightarrow \mathrm{~A} \rightarrow \mathrm{~B} \rightarrow \mathrm{C} \rightarrow 0$ be a zero exact at A , Us-exact at Band zero exact at C.
Proposition 1.3[2]: Let (C, U, ∂) be a chain of Rmodules and R-homomorphism and ($\mathrm{C}, \mathrm{U}, \partial$) be U's -exact sequence, If in sequence $F=\{F n\}$, each $F n$ is R-module isomorphism such that $F(U)=U^{\prime}$ at the subsequent figure is commutative, then is a U's exact sequence.

Proof: We show that $\operatorname{Im} \partial \mathrm{n}+2=(\partial \mathrm{n} \partial \mathrm{n}-1)-1$ Un-1. Assume that $x \in \operatorname{Im} \partial n+2 \exists c \in C n+2$ Such $x=\partial n+2$ (C).

We have Fn $[\partial \mathrm{n}+1 \partial \mathrm{n}+2(\mathrm{C})]=\left(\partial^{\prime} \mathrm{n}+1 \partial^{\prime} \mathrm{n}+2\right) \mathrm{Fn}+2$ (C). So $\partial^{\prime} n[F n\{\partial n+1 \quad \partial n+2\}]=\partial^{\prime} n\left[\partial^{\prime} n+1 \quad \partial^{\prime} n+2\right.$ $F n+2(C)] \in U ' n-1=>F n-1(\partial n \partial n+1 \partial n+2)(c) \in U \prime n-$ 1.

Since Fn-1(Un-1) = U'n-1 and Fn-1 is isomorphism then we get, $(\partial n \partial n+1 \partial n+2)$ (c) $\in U n-1$ or $(\partial \mathrm{n} \partial \mathrm{n}+1)(\mathrm{x}) \in U \mathrm{n}-1 \Rightarrow \mathrm{x} \in(\partial \mathrm{n} \partial \mathrm{n}+1)-1(\mathrm{Un}-1)$.
Henceforth, $\operatorname{Im} \partial \mathrm{n}+2 \subseteq(\partial \mathrm{n} \partial \mathrm{n}-1)-1 \quad$ Un-1. Conversely let, $x \in(\partial n \partial n+1)-1(U n-1)$, we have Fn$1(\partial \mathrm{n} \partial \mathrm{n}+1 \partial)(\mathrm{x}) \in \mathrm{U}$ 'n-1, and so, $\left(F n-1\left(\partial ' \mathrm{n} \partial^{\prime} \mathrm{n}+1 \partial\right)\right.$ Fn-1) (x)) \in Un-1, also we have Fn-1 (x) \in $\left(\partial^{\prime} \mathrm{n} \partial^{\prime} \mathrm{n}+1 \partial\right)-1$ Un-1 $=\operatorname{Im} \partial^{\prime} \mathrm{n}+2$.
So $\exists y \in C^{\prime} n+2$ such $F n+2(x)=\partial^{\prime} n+2 F n+2(z)$ and so $\mathrm{Fn}+1(\mathrm{x})=\partial^{\prime} \mathrm{n}+2 \mathrm{Fn}+2(\mathrm{z})=F \mathrm{~F}+1 \partial \mathrm{n}+2(\mathrm{z})=$ $F n+2(\partial n+2)(z)$.
Since $\mathrm{Fn}+1$ is monic we get $\mathrm{x}=\partial \mathrm{n}+2(\mathrm{z})$, henceforth $\mathrm{x} \in \operatorname{Im} \partial \mathrm{n}+2$.
Corollary 1.1[2]: Consider ($\mathrm{C}, \mathrm{U}, \partial$) be a chain UScomplex \& ($C^{\prime}, U^{\prime}, \partial^{\prime}$) be a U'S- exact sequence. If (C , U, ∂) and ($\mathrm{C}^{\prime}, \mathrm{U}^{\prime}, \partial^{\prime}$) are isomorphic, then ($\mathrm{C}, \mathrm{U}, \partial$) maybe a US-exact sequence.
Proof: (Obviously)
Lemma 1.2[5]: Let (Lambek Lemma)

A^{\prime}	\rightarrow	A	\rightarrow	$\mathrm{A}^{\prime \prime}$
$\downarrow \psi$		$\downarrow \varphi$		$\downarrow \theta$
B^{\prime}	\rightarrow	B	\rightarrow	$\mathrm{B}^{\prime \prime}$

be a commutative diagram where 1st and 2nd rows are U'S-exact, US-exact respectively.
Let V and W be "submodule" of B and B '
respectively, such $\operatorname{Im} \psi \supseteq \mathrm{W}$ and $\operatorname{Im} \varphi \supseteq \mathrm{V}$ then φ induced an "isomorphism".
$\varphi=\frac{\left(\theta \alpha_{2}\right)^{-1}(\mathrm{U})}{\alpha_{2}^{-1}\left(\mathrm{U}^{\prime}\right)+\varphi^{-1}(\mathrm{~V})} \rightarrow \frac{\operatorname{Im} \varphi \cap \operatorname{Im} \beta_{1}}{\operatorname{Im}\left(\varphi \alpha_{1}\right)}$
Proof: We prove that φ induces a "homomorphism" of this type
Let $x \in\left(\theta \alpha_{2}\right)-1(U)$ and $\varphi(x) \in \operatorname{Im} \varphi$.
Since $\beta 2 \varphi(x)=\theta \alpha_{2}(x) \in U$ and $(\beta 2)-1(U)=\operatorname{Im}$ ($\beta 1$).
We get $\varphi(x) \in \operatorname{Im}(\beta 1)$. So $\varphi(x) \in \operatorname{Im} \varphi \cap \operatorname{Im}(\beta 1)$.
Now we define $\varphi\left[\mathrm{x}+\alpha 1-1\left(\mathrm{U}^{\prime}\right)+\varphi-1(\mathrm{~V})\right]=\varphi(\mathrm{x})+$ $\operatorname{Im} \varphi \alpha 1$, first we show that Φ is well defined, then we assume
$\left[\mathrm{x}+\alpha 2-1\left(\mathrm{U}^{\prime}\right)+\varphi-1(\mathrm{~V})\right]=\left[\mathrm{y}+\alpha 2-1\left(\mathrm{U}^{\prime}\right)+\varphi-1\right] \Rightarrow \mathrm{x}-$
$y \in\left[\alpha 2-1\left(U^{\prime}\right)+\varphi-1(V)\right]$ and so $\exists a \in \alpha 2-1\left(U^{\prime}\right)$ and $b \in \varphi-1(V)$ with $x-y=a-b$, hence $\varphi(x)-\varphi(y)=$ $\varphi(\mathrm{a})-\varphi(\mathrm{b})$. Since $a \in \alpha 2-1$ (U').
we have, $\alpha \in \operatorname{Im}(\alpha 1) \Rightarrow(\varphi) \alpha \operatorname{Im}(\varphi \alpha 1)$.S. Since $b \in$ $\varphi-1(\mathrm{~V}) \Longrightarrow \varphi(\mathrm{b})-\epsilon \beta 1(\mathrm{~W})$ Thus $\exists \mathrm{c} \in \mathrm{W}$ Also \exists such $\varphi(\mathrm{b})=\beta 1$ (c). Also, $\exists \mathrm{d} \in \mathrm{A}^{\prime}$ such $\Psi(\mathrm{d})=\mathrm{c}$.
Thus $\varphi(\mathrm{b})=\beta 1 \Psi(\mathrm{~d})=\Psi \alpha 1(\mathrm{~d}) \Longrightarrow \varphi(\mathrm{b}) \in \operatorname{Im}(\varphi \alpha 1)$. Hence $\varphi(x)-\varphi(y)=\varphi(a)-\varphi(b) \in \operatorname{Im}(\varphi \alpha 1)$ So Φ is well defined. It is clear that "homomorphism", $\varphi(\mathrm{x})$ $=y$. So $\theta \alpha 2(x)=\beta 2 \varphi(x) \beta 2 y$.
Also, we have $y \in \beta 2-1$ (U') or $\beta 2(y) \in U$. So, we obtain $\theta \alpha 2(x) \in U$ or $x \in(\theta \alpha 2)-1$ (U).
Now we show that Φ is monic, assume that we have
$\Phi\left[\mathrm{x}+\alpha 2-1\left(\mathrm{U}^{\prime}\right)+\varphi-1(\mathrm{~V})\right]=\varphi(\mathrm{x})+\operatorname{Im}(\varphi \alpha 1)=\operatorname{Im}$ ($\varphi \alpha 1$)
$\Rightarrow \varphi(\mathrm{x}) \in \operatorname{Im}(\varphi \alpha 1) \exists \mathrm{z} \in \mathrm{A} \operatorname{such} \varphi(\mathrm{x})=(\varphi \alpha 1(\mathrm{z}))$
$\Rightarrow \varphi(\mathrm{x}-\alpha 1(\mathrm{z}))=0 \Rightarrow(\mathrm{x}-\alpha 1(\mathrm{z})) \in \operatorname{Ker} \varphi \exists \mathrm{t} \in$ $\operatorname{Ker} \varphi$, such $(\mathrm{x}=\mathrm{t}+\alpha 1(\mathrm{z}))$.
Where $\alpha 1(\mathrm{z}) \in \operatorname{Im}(\varphi \alpha 1)=\alpha 2-1\left(\mathrm{U}^{\prime}\right)$ and $\mathrm{t} \in \varphi-1(\mathrm{~V})$. So $x \in \alpha 2-1\left(U^{\prime}\right)+\varphi-1(V)$.

Lemma 1.3[3]: (Snake lemma) Let

be a "commutative diagram" with is small such
The 1st row is "Us-exact" and the 2nd row is "U'sexact"
$\mathrm{W} \subseteq \operatorname{Im} \alpha$
$\mathrm{U} \subseteq \operatorname{Im} \gamma$
$\mathrm{g}(\mathrm{V}) \subseteq \mathrm{U}, \mathrm{f}(\mathrm{W})=\mathrm{V}$
$\mathrm{U}^{\prime} \subseteq \gamma-1(\mathrm{U})$
Then there is a connecting "homomorphism"
$\omega: \frac{\gamma^{-1}(\mathbf{U})}{\mathbf{U}^{\prime}} \rightarrow$ Co Ker α Such the subsequent is "exact".
$\alpha-1(\mathrm{~W}) \xrightarrow{\mathrm{f} 1^{\prime} *} \beta-1 \xrightarrow{\gamma-1 *} \frac{\gamma^{-1}(\mathrm{U})}{\mathrm{U}^{\prime}} \xrightarrow{\omega} \operatorname{Co} \operatorname{Ker} \alpha \xrightarrow{\mathrm{f} *} \operatorname{Co} \operatorname{Ker} \beta \xrightarrow{\mathrm{~g} *}$ Co Ker γ.
Proof: Consider the diagram:

$$
\text { Co Ker } \alpha \xrightarrow{f^{*}} \text { Co Ker } \beta \xrightarrow{g^{*}} \text { Co Ker } \gamma
$$

We have $\mathrm{g}^{\prime}[\beta-1(\mathrm{~V})] \in \gamma-1(\mathrm{U})$ and $\mathrm{f}^{\prime}[\alpha-1(\mathrm{~W})] \in \beta-$ $1(\mathrm{~V})$; so, we have map
$\alpha-1(\mathrm{~W}) \xrightarrow{\mathrm{f} 1^{\prime} *} \beta-1(\mathrm{~V}) \xrightarrow{\mathrm{g}^{\mathbf{\prime}^{\prime} *}} \gamma-1(\mathrm{U})$
........................... (I)
Suppose π is the "canonical homomorphism" π : γ $1(U) \rightarrow \frac{\gamma^{-1}(U)}{U^{\prime}}$
We denote $\mathrm{f}^{\prime *}=\mathrm{f}^{\prime}\left|\begin{array}{c}\text { and } \\ \alpha^{-1}(\mathrm{~W})\end{array} \quad \mathrm{g}^{\prime} *=\mathrm{g}^{\prime}\right| \beta-1(\mathrm{~V})$
Then
$\alpha-1(\mathrm{~W}) \xrightarrow{\mathrm{f}^{\prime} *} \beta-1 \frac{\gamma^{-1}(\mathrm{U})}{\mathrm{U}^{\prime}}$
(II)

On the other hand, f and g induce the subsequent maps;
$\mathrm{f}^{*}: \frac{\mathrm{A}}{\operatorname{Im} \alpha} \rightarrow \frac{\mathrm{B}}{\operatorname{Im} \beta}, \mathrm{g}^{*}: \frac{\mathrm{B}}{\operatorname{Im} \beta} \rightarrow \frac{\mathrm{C}}{\operatorname{Im} \gamma}$, hence the subsequent sequence
$\operatorname{Co} \operatorname{Ker} \alpha \xrightarrow{\mathrm{f} *} \operatorname{Co} \operatorname{Ker} \beta \xrightarrow{\mathrm{~g} *} \operatorname{Co} \operatorname{Ker} \gamma$, now we show that \exists a "homomorphism" $\omega: \frac{\gamma^{-1}(\mathrm{U})}{\mathrm{U}^{\prime}} \rightarrow$ Co Ker α.
Connecting the (I) and (II)
$\alpha-1(\mathrm{~W}) \xrightarrow{\mathrm{f} 1^{\prime} *} \beta-1(\mathrm{~V}) \xrightarrow{\mathrm{g}^{\prime} \mathbf{1}^{*}} \frac{\gamma^{-1}(\mathrm{U})}{\mathrm{U}^{\prime}} \xrightarrow{\omega} \operatorname{CoKer} \alpha \xrightarrow{\mathrm{f} *} \operatorname{Co} \operatorname{Ker} \beta \xrightarrow{\mathrm{~g} *}$ Co Ker γ
Assume $Z+U^{\prime} \in \frac{\gamma^{-1}(\mathrm{U})}{\mathrm{U}^{\prime}}$ that, choose $\mathrm{b}^{\prime} \in B$ with g^{\prime} (b') =z.
Since $g \beta\left(b^{\prime}\right)=\gamma g^{\prime}\left(b^{\prime}\right)=\gamma(z) \in U$. We Get $\beta\left(b^{\prime}\right)=g$ $1\left(b^{\prime}\right)$ and $\beta\left(b^{\prime}\right) \in \operatorname{Imf}$.
Since f is monic f: A $\rightarrow \operatorname{Im} f$ is "bijective". So \exists a unique element $a \in A$ then $\exists \beta\left(b^{\prime}\right)=f(a) \Rightarrow a=f$ $1 \beta\left(b^{\prime}\right)$ defines $\omega\left(z+U^{\prime}\right)=a+\operatorname{Im} \alpha$ We show that ω is well described that is $b^{\prime} \in B$ and $b^{\prime \prime} \in B^{\prime \prime}$. With $g^{\prime}\left(b^{\prime \prime}\right)$
$=z$. Then $\beta\left(b^{\prime \prime}\right)=\beta\left(a^{\prime}\right)$.
We obtain $g^{\prime}\left(b^{\prime}\right)=g^{\prime}\left(b^{\prime \prime}\right) \Longrightarrow g^{\prime}\left(b^{\prime}-b^{\prime \prime}\right)=0$
$\Rightarrow b^{\prime}-b^{\prime \prime} \in \operatorname{ker} g^{\prime}$
$\Rightarrow \mathrm{b}^{\prime}-\mathrm{b} " \in \operatorname{ker} \mathrm{~g}^{\prime} \subseteq \mathrm{g}^{\prime}-1\left(\mathrm{U}^{\prime}\right)$ imf '

Hence $\exists a \in A$ ' with b '-b" $=f^{\prime}$ (a)
Since, $\beta f^{\prime} \overline{(a)}=f \overline{(a)}$ and $\beta\left(b^{\prime}-b^{\prime \prime}\right)=f \alpha \overline{(a)} \Rightarrow \beta\left(b^{\prime}-\right.$ $\left.\mathrm{b}^{\prime \prime}\right)=\mathrm{f} \alpha(\mathrm{a})$ so $\left(\mathrm{a}^{\prime}-\mathrm{a}^{\prime \prime}\right)=\alpha \overline{(\mathrm{a})} \in \operatorname{Im} \alpha$.
So $\mathrm{a}+\operatorname{Im} \alpha=\mathrm{a}^{\prime}+\operatorname{Im} \alpha \omega$ is a "homomorphism". Proof of "exactness" is rather long, so that it will be divided into several steps.
Step1: Let $b^{\prime} \in \operatorname{ker} g{ }^{\prime *} \Longrightarrow g^{\prime *}\left(b^{\prime}\right)=0$ then $g^{\prime}\left(b^{\prime}\right)+$ $U^{\prime}=U^{\prime}$ and so $b^{\prime} \in g^{\prime}-1\left(U^{\prime}\right)$ Hence $\exists x \in A^{\prime}$ such $b^{\prime}=f$ ' (x) .
Now it is enough to show that $x \in \alpha-1(W)$ or $\alpha(x) \in W$, we have
$\mathrm{f} \alpha(\mathrm{x})=\beta \mathrm{f}^{\prime}(\mathrm{x})=\beta^{\prime}\left(\mathrm{b}^{\prime}\right)$ since $\mathrm{b}^{\prime} \in \beta-1(\mathrm{~V}) \Longrightarrow \beta\left(\mathrm{b}^{\prime}\right)$ $\in V$.
Which implies $f \alpha(x) \in V$. Since $f(W)=V$ and f is monic we have $\alpha(x) \in W$ or $x \in \alpha-1=\operatorname{Imf}-1^{*}$, so, ker $g^{\prime *} \subseteq f^{\prime}$ $*$. Conversely, it is clear that $\mathrm{f}^{\prime *} \mathrm{~g}^{\prime *}=0 \Longrightarrow \operatorname{Imf}^{\prime *}$ \subseteq Ker g' Hence Imf '* \subseteq Ker g'*.
Step2:Imf ${ }^{\prime *}=$ Ker $g^{\prime *}$ Suppose that g ' $\left(b^{\prime}\right)+U^{\prime} \in$ Im g'*.
Where $b^{\prime} \in \beta-1(V)$ Definition of connecting map,
$\omega\left(g^{\prime}\left(b^{\prime}\right)+U^{\prime}\right)=f^{\prime} \beta g^{\prime}-1\left(g^{\prime}(b ')\right)+$ Im α Since $b^{\prime} \in \beta-$ $1(V) \Rightarrow \beta\left(b^{\prime}\right) I \in V$, since $f(W)=V$ and f is monic $\Rightarrow f-$ $1 \beta\left(b^{\prime}\right) \in W \Longrightarrow f-1 \beta\left(b^{\prime}\right) \in \operatorname{Im} \alpha$. Hence $\omega\left(g^{\prime}\left(b^{\prime}\right)+U^{\prime}\right)$ $=\operatorname{Im} \alpha \Rightarrow \mathrm{g}^{\prime}\left(\mathrm{b}^{\prime}\right)=\mathrm{U}^{\prime} \in \operatorname{ker} \omega$. So $\operatorname{Im} \mathrm{g}^{\prime *} \subseteq \operatorname{Ker} \omega$. Conversely, Let $\mathrm{t}^{\prime}+\mathrm{u}^{\prime} \in \operatorname{Ker} \omega$ with $\mathrm{t}^{\prime} \in \gamma-1(\mathrm{U})$ Then $\omega\left(\mathrm{t}^{\prime}+\mathrm{u}^{\prime}\right)=\mathrm{f}-1 \beta \mathrm{~g}-1\left(\mathrm{t}^{\prime}\right)=\alpha(\mathrm{x}) \Rightarrow \beta \mathrm{g}-1\left(\mathrm{t}^{\prime}\right)=\mathrm{f}(\alpha(\mathrm{x}))$. We have $\beta \mathrm{h}-1\left(\mathrm{t}^{\prime}\right)=\beta \mathrm{f}^{\prime}(\mathrm{x}) \Longrightarrow \beta\left\{\mathrm{g}-1\left(\mathrm{t}^{\prime}\right)-\mathrm{f}^{\prime}(\mathrm{x})\right\}=0$.
$\Rightarrow \mathrm{g}-1(\mathrm{t}$ ' $)-\mathrm{f}^{\prime}(\mathrm{x}) \in \operatorname{Ker} \beta \subseteq \beta-1(\mathrm{~V})$
$\Rightarrow \mathrm{g}-1\left(\mathrm{t} \mathrm{t}^{\prime}\right)-\mathrm{f}^{\prime}(\mathrm{x}) \in \beta-1(\mathrm{~V})$
Hence $\mathrm{g}^{\prime *}\left\{\mathrm{~g}^{\prime}-1\left(\mathrm{t}^{\prime}\right)-\mathrm{f}^{\prime}(\mathrm{x})\right\}=\mathrm{g}^{\prime} \mathrm{g}^{\prime}-1\left(\mathrm{t} \mathrm{t}^{\prime}\right)-\mathrm{g} \mathrm{g}^{\prime} \mathrm{f}(\mathrm{x})+$ $\mathrm{U}^{\prime}=\mathrm{t}^{\prime}+\mathrm{U}^{\prime}$ So $\mathrm{g}^{\prime *}\left\{\mathrm{~g}^{\prime}-1\left(\mathrm{t}^{\prime}\right)-\mathrm{f}^{\prime}(\mathrm{x})\right\}=\mathrm{t}^{\prime}+\mathrm{U}^{\prime} \Longrightarrow \mathrm{t}^{\prime}+\mathrm{U}^{\prime}$ \in Img'*. $^{\prime}$.
Thus ker $\omega \subseteq$ Img*
Step 3: $\operatorname{Im} \omega=\operatorname{ker} \mathrm{f}^{*}$. Consider $\omega^{\prime}\left(\mathrm{t}^{\prime}+\mathrm{u}^{\prime}\right) \in \operatorname{Im} \omega$.
Then $g^{\prime}\left(b^{\prime}\right) \in \gamma-1+\operatorname{im} \alpha \in \operatorname{Im} \omega$, hence $f^{*}\left\{f-1 \beta g^{\prime}-1\right.$ $\left.\left(\mathrm{t}^{\prime}\right)+\operatorname{Im} \alpha\right\}=\mathrm{ff}-1 \beta \mathrm{~g}^{\prime}-1\left(\mathrm{t}^{\prime}\right)+\mathrm{f}(\operatorname{Im} \alpha)=\beta \mathrm{g}^{\prime}-1\left(\mathrm{t}^{\prime}\right)+$ $\mathrm{f}(\operatorname{Im} \alpha)=\beta \mathrm{g}^{\prime}-1(\mathrm{t})+\operatorname{Im} \beta=\sin \beta \Rightarrow \omega\left(\mathrm{t}^{\prime}+\mathrm{u}^{\prime}\right) \in \operatorname{kerf}^{*}$. So, $\operatorname{Im} \omega \subseteq$ kerf*, Conversely, suppose that $\alpha+$ $\operatorname{Im} \alpha \in \operatorname{kerf}^{*} \Rightarrow f^{*}\{a+\operatorname{Im} \alpha\}=\operatorname{Im} \beta \Longrightarrow f(a) \in \operatorname{Im} \beta$ and $\exists b^{\prime} \in B^{\prime}$ such $\beta\left(b^{\prime}\right)=f(a)$. Since $g f(a) \in U$ and $g \beta\left(b^{\prime}\right) \in U$ it is clear that $\gamma g^{\prime}\left(b^{\prime}\right) \in U$ and so $g^{\prime}\left(b^{\prime}\right) \in$ $\gamma-1(U)$. So,
$\omega\left\{g^{\prime}\left(b^{\prime}\right)+U^{\prime}\right\}=\mathrm{f}-1 \beta \mathrm{~g}^{\prime}-1\left(\mathrm{~g}^{\prime}\left(\mathrm{b}^{\prime}\right)\right)+\operatorname{Im} \alpha=\mathrm{f}-1 \beta\left(\mathrm{~b}^{\prime}\right)+$ $\operatorname{Im} \alpha=\alpha+\operatorname{Im} \alpha$
$\Rightarrow \alpha+\operatorname{Im} \alpha \in \operatorname{Im} \omega \Rightarrow \operatorname{kerf}^{*} \subseteq \operatorname{Im} \omega$. Hence $\operatorname{Im} \omega=$ kerf*.
Step 4: Imf $^{*}=$ ker g* *
Let $\mathrm{f}^{*}\{\mathrm{a}+\operatorname{Im} \alpha\} \in \operatorname{Imf}{ }^{*}$. Then $\mathrm{g}^{*} \mathrm{f}^{*}\{\mathrm{a}+\operatorname{Im} \alpha\}=\mathrm{gf}(\mathrm{a})+$ $\operatorname{Im} \gamma$.
Since $\operatorname{gf}(a) \in U \subset \operatorname{Im} \gamma, \operatorname{gf} "\{a+\operatorname{Im} \alpha=\operatorname{Im} \gamma\}$ and $\mathrm{f} "\{a+$ $\operatorname{Im} \alpha\} \in$ ker g^{*}. Now let $b+\operatorname{Im} \beta \in$ ker g^{*}.
Then $g(b) \in \operatorname{Im} \gamma$ and $\exists P^{\prime} \in C^{\prime}$ such $g(b)=\gamma\left(p^{\prime}\right)$.
Since g^{\prime} is epic, $\exists b^{\prime} \in B^{\prime}$ with $g^{\prime}\left(b^{\prime}\right)=p$. Hence $g(b)$
$=\gamma g^{\prime}\left(b^{\prime}\right)$ and $\operatorname{so} g(b)=g \beta\left(b^{\prime}\right) \Rightarrow g(b)-g \beta\left(b^{\prime}\right)=0 \Rightarrow$ $\mathrm{g}\left\{\mathrm{b}-\beta\left(\mathrm{b}^{\prime}\right)\right\}=0 \Rightarrow\left\{\mathrm{~b}-\beta\left(\mathrm{b}^{\prime}\right)\right\} \in \operatorname{ker} \mathrm{g} \subseteq \mathrm{g}-1(\mathrm{U})=$ Imf. So $\exists \mathrm{a} \in$ A such $b-\beta\left(b^{\prime}\right)=\mathrm{f}(\mathrm{a})$. So $\mathrm{b}+\operatorname{Im} \beta=\mathrm{f}(\mathrm{a})$ $+\operatorname{Im} \beta=f^{*}(a+$ ker $\gamma)$. Thus $b+\operatorname{Im} \beta \in \operatorname{Imf}^{*}$.

Conclusion

In this paper Ws - Exact sequence has been introduced with the help of a particular condition of superfluous in different steps. We used means N is a submodule of M. A submodule of n of module M is claimed to be superfluous $\mathrm{N} \ll \mathrm{M}$, if for any submodule K of $\mathrm{M}, \mathrm{N}+\mathrm{K}=\mathrm{M}$ implies that $\mathrm{K}=\mathrm{M}$.

References

Arnold D.A., Pierece R.S., Raid J.D. Vinsonhaletr C. and Wickless W. "Torsion- free abelian groups of finite rank projective as modules over their rank projective as modules over their endomorphism rings" J. Algebra. 71 (1981), 1-10.
Davvaz, B., and Y. A. ParnianGaramaleky. "A note on exact sequences." Bulletin of the Malaysian Mathematical Sciences Society 22.1 (1999).
Endo, Shizuo "On modules over commutative rings". J. Math. Soc. Japan. 14(1962), 284-291.
Levy L.S. "Commutative rings whose homomorphism rings are self-injective" Pac. J. Math 18 (1966)
N. Mahdouand: M. Tamekkante "IF-dimension of modules" Communication in Mathematics and Application, 1 (2) (2010), 99-104.

[^0]: Corresponding author: Ashwani Kumar Garg
 Address: ${ }^{1,2,3}$ Associate Professor, Regional Institute of Education, NCERT, Bhopal (M.P.), India
 E-mail:ashwanimathematics@gmail.com

