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Abstract- 

Different theories of stability including Gibbs-Duhem Theory of Stability, theory of 

thermodynamic stability of nonequilibrium states, Comprehensive Thermodynamic 

Theory of Stability of Irreversible Processes (CTTSIP) have been studied in this paper. 

CTTSIP is developed using Lyapunov’s second (direct) method of stability of motion 

and the second law of thermodynamics. In fact, CTTSIP is compact and similar to the 

Gibbs-Duhem stability theory of states of equilibrium thermodynamics. 

CTTSIP has been applied to chemically oscillating system of Brusselator Model and 

the results are obtained after systematic computation and simulation of the 

expressions by Mathematica software.  

Keywords- thermodynamic stability, Irreversible Processes, Brusselator Model, 

computation and simulation, Mathematica, 

 

1. Introduction  

Nature and natural phenomena are very mysterious, we know the processes of 

fluctuation, instability, evolution, self-organization and formation structures in chaos 

on all level of chemistry and biology to cosmology. Majority of them fall in the fold of 

irreversible processes. We have so far gain enough understanding through molecular 

interaction that these phenomena are occurred at far from equilibrium, but it is 

interesting to know how these forces produce the long range coherence in 

nonequilibrium situations. The processes, which are impossible to realize at 

equilibrium, become possible in far from equilibrium situations. Indeed irreversible 

processes lead the system to certain space-time structures.  It is interesting to study 

how these real processes react to the perturbations: whether the systems or 

processes remain stable or become unstable under the external disturbances.  
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2. Gibbs-Duhem Theory of Stability 

The laws of thermodynamics establish the thermodynamic variables of equilibrium 

states. The equilibrium states in spatially uniform closed systems are completely 

described by only two variables. Using Clausius inequality the general equilibrium 

conditions for a closed thermodynamic system, capable of performing PV work can 

be deduced as1-7 

 TdS dU PdV   (1) 

Thus, on incorporating Clausius inequality, the direction of natural transformations is 

introduced. At constant internal energy  0dU  and volume  0dV  , eq.(1) gives 

  0 Const. , dS U V  (2)  

showing that the entropy, S,  seeks a maximum at constant U and V. Setting  dS and 

dV equal to zero in equation (1), we obtain 

  0 Const. , dU S V  (3) 

that is the internal energy “seeks a minimum” under conditions of constant entropy 

and volume. Under conditions of constant entropy and pressure, equation (3) 

becomes 

   0d U PV dH    (4)  

Similarly using A U TS   and G U PV TS   , we obtain the free-energy minimization 

principle, namely, 

 0dA   (5)  

 0dG   (6)  

Thus, in all natural processes occurring in closed adiabatic systems, the entropy 

continually increases. Using the principle of maximization of entropy for an adiabatic 

evolution of a system and minimization of thermodynamic potentials (U, H, A and G), 

the Gibbs-Duhem theory of stability of equilibrium states, for global level, 

immediately evolves as1-7 

 max.,S   (7)  
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  (8) 
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   
  (9) 

where ix  and 
jx  are traditionally termed as the virtual displacements from the 

chosen equilibrium state and equation (9),  0 describes the stability of equilibrium 

state. Thus, the description of non-equilibrium thermodynamics was introduced 

through the natural outcome of Gibbs-Duhem theory of stability. However, it does 

not focus on the thermodynamic description of nonequilibrium states.  In view of 

this, the need of formulations of thermodynamic theory for nonequilibrium states 

felt. These efforts naturally led to the development of stability theory for 

nonequilibrium states. 
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In the past several attempts had been made to develop suitable thermodynamic 

theory of stability for nonequlibrium states using Lyapunov’s direct method of 

stability of motion8-12. The well documented thermodynamic theory of stability of 

nonequilibrium states in so-called local equilibrium assumption (LEA) is developed by 

Glansdorff and Progogine4-7. We discuss this theory in the following section.  

3.  Stability of Nonequilibrium States 

Glansdorff and Prigogine have described a theory of thermodynamic stability of 

nonequilibrium states4-7 which is supposed to confirm with so-called local 

equilibrium assumption. For such state they have proposed, at the local level 

description, namely, 

  
2

2

,

1
0,

2
i j

i j i j

s
s y y

y y
  

 
  

   
  (10) 

  2 0,s
t






 (11) 

where s is the per unit mass entropy, 
iy  and 

jy  are the thermodynamic variables for 

such nonequilibrium states and equation (11) ( ) describes the asymptotic stability. 

Note that equations (10) and (11) are the conditions under the constraint of 

adiabaticity. Under the non-adiabatic conditions no guarantee is given by the second 

law of thermodynamics that 2S  will be negative quantity. Moreover, the virtual 

displacements such as 
ix  and 

jx  of system in equilibrium may cause the 

generation of a spatial non-uniformity. Thus, if on perturbation a spatial non-

uniformity gets generated then there is no locus standii of the global level variables 

'ix s. Therefore, it is clear that 2S  cannot be taken as a thermodynamic Lyapunov 

function for all type of perturbations of equilibrium states.  

A detailed investigation of Glansdorff and Prigogine’s proposals had been 

undertaken by Landsberg13, Keizer and Fox14 and Lavenda15. They found that 

Glansdorff and Prigogine’s stability theory suffers from serious drawbacks, namely: 

Landsberg29 had criticized the maximization of ‘s’ within the domain of local 

equilibrium state because at the local level each small pocket has the features of the 

open systems and hence s  cannot be equated to zero because it is not guaranteed 

so by the second law of thermodynamics. On the other hand, equation (11) 

according to Landsberg appears to be a new law whose basis remains unknown and 

termed as a basic trick. Keizer and Fox also contested the validity of the proposals of 

equations (10) and (11) and which they have shown as not having a thermodynamic 

sanction. Of course, on developing an irreversible thermodynamic framework one 

would obtain an appropriate set of local level thermodynamic variables 'ix s and 'jx s 

and for this type of analysis it is first required to establish an entropy function in 

nonequilibrium state that too based on the law of thermodynamics. 
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In case nonequilibrium stationary states Prigogine concluded that a NSS corresponds 

to minimum production of entropy. However, later Lavenda has unambiguously 

proved that the said principle of minimum production of entropy is an erroneous 

conclusion. Lavenda clearly asserts that to arrive at the thermodynamic stability of a 

so-called local equilibrium state there should be a guarantee given by the law of 

thermodynamics.  

Few other proposals on thermodynamic theory of stability and Lyapunov function is 

the free energy (Gibbs or Helmholtz) of the system were developed16-19. However, 

they too are incapable of dealing with all nonequilibrium situations especially those 

having their origin in the existence of spatial non uniformity and work only in the 

cases of linear nonequilibrium situations or close to equilibrium. 

4.  Lyapunov’s Direct Method of Stability of Motion 

Lyapunov’s direct method of stability of motion8-12 involves the identification of 

suitable sign definite Lyapunov function and then determines its total time 

derivative. The sign and behaviour of this time derivative of the Lyapunov function 

then tell us whether the dynamic system is stable, asymptotically stable, and stable 

under constantly acting small disturbances or unstable. The gist this method is 

described below. Let the given differential equations of the perturbed motion be 

    i

1 2

d
, , ,......., 1,2,......,

d
i n

x
X t x x x i n

t
   (12) 

The trivial solution of equation (12) is  

 
i 0x   (13) 

Where
ix ’s have been defined as, 

 
0 0

i 0 0 0, const.i i i i ix z z x z z small       (14) 

 

is then read as where 0

iz  are the coordinates of the real motion and 
iz  are those for 

the corresponding perturbed trajectory. The equations of unperturbed motion 

 0 0

00, 0i ix x   (15) 

 

Thus ix ’s are the small perturbation coordinates in the domain 

 0 0, 0, , 0it t t x H H     (16) 

where H  is a sufficiently small positive constant and 

  ,0,0,........,0 0iX t   (17) 

Let  1 2, , ,........, nV t x x x be a differentiable Lyapunov function such that,   

    1 2 1 2, , ,........, , ,........, 0n nV t x x x x x x   (18) 

    ,0,0,........,0 0, 0,0,........,0 0V t    (19) 

That is, V  has a strict minimum at the origin and   is a continuous positive number. 
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 0i i i

i

i i

dV V V
X

dt t x

  
   

  
  (20) 

for 
0t t , the unperturbed motion is stable. Outside an arbitrarily small 

neighbourhood of the origin if 

 2 2

0 00,i

i

x t T t     (21) 

and in addition to eq.(6.20), if we have 

 0
dV

dt
    (22) 

where 2 and   are the positive constants, then 0 ( 1, 2,3,......, )ix i n  is 

asymptotically stable. Further, if, 

  0, , 0,0,0 0, 0
dV

V V t
dt

      (23) 

and the derivatives 
iV x  are the finite then the unperturbed motion is stable under 

the constantly acting small disturbances. This is Malkin’s theorem8-12.  

Recently A. A. Bhalekar has developed stability theory using the frabrics of 

Lyapunov’s direct method stability of motion known as Comprehensive 

Thermodynamic Theory of Stability of Irreversible Processes (CTTSIP) 20-23.  The 

proposed CTTSIP is comprehensive as well as generalized one. CTTSIP is applicable to 

any real processes, as it does not impose any restrictions regarding type and extent 

of irreversibility. Using the setup of CTTSIP, the stability analysis of several physical 

and chemical problems have been reported, such as the stability of (i) equilibrium 

and nonequilibrium states23, (ii) the rigid body heat conduction23, (iii) the stress 

relaxation processes in viscoelastic fluids24,25, (iv) elementary chemical reactions26,27, 

and (v) enzyme catalysed reactions28. Using CTTSIP the stability of industrial chemical 

reactions such as ammonia synthesis and oxidation of sulphur dioxide under 

temperature perturbation has been reported29-31. 

4.1.  Stability of Chemical Reactions by Lyapunov Analysis 

There are several ways to identify Lyapunov function, 
SL  for chemically reacting 

system. We know that the rate of entropy production1-7, S  for multi steps chemical 

reaction at constant temperature, T and pressure, p is given by  

  0, 1,2,3..........i i

S

i

d
i

T dt


   

A
 (24) 

eq.(24) which is function of mole numbers of reacting species, that is  

    1 2, ,......., 0, 1,2,3..........S S in n n i      (25) 

where   1, 2 , 3 . . . . . . . . . .in i   is the mole numbers of the reacting species (coordinates). 

Now, on account of a small perturbation of coordinates from the real (unperturbed) 

system, there is change in amount of rate of entropy production, is defined by .S  

In mathematical terms the S  is obtained by differentiating S , that is  
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 1 2

1 2

...............S S S

S i

i

n n n
n n n

   
  

    
  

 (26) 

where 
in is the perturbation coordinate, that is small change in mole numbers on 

perturbation. Notice that 

 0S ¤  (27) 

and  

 0in ¤  (28) 

depend on the behaviour of the process and act of the perturbation. Note that, in 

our earlier discussions on the theories of stability of motion the small change in 

entropy,
S  is identify as Lyapunov function, 

SL  so in this case as well. Therefore, 

eq.(26), is further reproduced as 

 1 2

1 2

............... .S S S

S i

i

L n n n
n n n
  

  
   
  

 (29) 

Thus, 
SL  becomes the function of perturbation coordinate, 

in  and hence, the total 

time derivative of 
SL  is obtained from eq.(29) as     

 
     1 2

1 2

............... .
iS S S S

i

d n d n d ndL

dt n dt n dt n dt

    
   
  

 (30) 

In equation (30), 
1 2, ,S S S in n n      are identified as gradient of the Lyapunov 

function, 
SL .  

Further, the rate equations1-7 for any chemical reactions, read as 

 

 

 
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1 2
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, ,.......,
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, ,.......,
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dt

dn
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dn
h n n n

dt







 (31) 

The rate equations are also the function of reacting coordinates. Thus, small change 

in mole numbers,
in  on effect of perturbation is obtained as 

 

 

 

1

1 2

1 2

2

1 2

1 2

...............

............... and so on.

i

i

i

i

d n f f f
n n n

dt n n n

d n g g g
n n n

dt n n n


  


  

  
   
  

  
   
  

 (32) 

equation (32) gives how the perturbation coordinates advance with time in 

perturbation space.  

Now with equations.(29) and (30), one can easily establish the stability of the 

processes using the fabrics of the Lyapunov’s direct method of stability of motion. 

The given process is stable and asymptotically stable if one satisfy: 

 0, 0 or 0, 0S S

S S

dL dL
L L

dt dt
        (33) 
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and unstable if  

 0, 0 or 0, 0S S

S S

dL dL
L L

dt dt
     (34) 

The finiteness of gradient of Lyapunov function along with condition given in eq.(32), 

ensures the stability under constantly acting small disturbances, as per Malkin’s 

theorem. 

4.2. The Lotka-Volterra Model 

The Lotka-Volterra prey-predetor model37-42 consisting of three reactions steps,  

 

1

2

3

A X 2X

X Y 2Y

Y P

k

k

k

 

 



  (35) 

where first two reaction steps follow second order kinetics in which two reactants 

produces a product, while third reaction is the first order kinetics in which single 

reactant in a single step produces a product. X  is the population of rabbits, which 

reproduce auto catalytically,  A  is the amount of grass, which assumed to be 

constant, or at least in great excess compared with its consumption by the rabbits, 

Y  is the population of lynxes (bobcats), and P  represents the dead lynxes which 

again assumed to be constant.  1, 2, 3ik i  are the forward rate constants. Assuming 

the reverse rate constants are insignificant, the expression for rate equations for 

Lotka-Volterra reaction scheme are given by chemical kinetics37-42, that read as 

   1
1 1 A X

d
v k

dt


   (36) 

   2
2 2 X Y

d
v k

dt


   (37) 

  3
3 3 Y

d
v k

dt


   (38) 

 
 

     1 2 1 2

X
A X X Y

d
k k v v

dt
     (39) 

 
 

    2 3 2 3

Y
X Y Y

d
k k v v

dt
     (40) 

where  1,2,3i i   is the extent of reaction,  1,2,3iv i  is the rate of reaction.  

There is an initial transient behavior during which the intermediates show normal 

behavior of progression. After this, however, the system begins to move away from 

the steady state. The concentration of X and Y begins to oscillate and their rate 

becomes nonzero. The rate of change of concentration of intermediate in this case 

given by equations.(39) and (40).  

For constant concentration of A and P we obtain sustain oscillations and 

intermediates oscillate in the finite limit of concentrations. However, for closed 

system that concentration of A and P are no more time independent and oscillations 
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decay in time.  The oscillatory behavior of intermediates X and Y are plotted with 

time by using commercial software Mathematica-10. For computer programming, 

following rate constants and concentration of reactants and products were assumed. 

 

Table 1.1 
3 1 1

1 2 1 ,k k dm mol s   1

3 3k s  

  3X 0.1 mol dm  

  3A 3.0 mol dm  

  3P 1mol dm  

 

The observations, obtained through Mathematica programming are shown in 

Fig.1and 2. The concentrations of intermediate species vary between the certain 

maximum and minimum values are shown in Fig 1  

 

 

 

 
Fig 1: Variation of X and Y with time 
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Fig 2:  Maximum and minimum values (Limit Cycle)  

                                                  in which X and Y are oscillating 

 

 

The expressions for chemical affinities4-7 for the reaction scheme of Lotka-Volterra 

model described in equation (35), read as  

 
 
 1 1

A
ln

X
RT

 
    

 
A A  (41) 

 
 
 2 2

X
ln

Y
RT

 
    

 
A A  (42) 

 
 
 3 3

Y
ln

P
RT

 
    

 
A A  (43) 

where 1
A , 2

A  and 3
A  are the chemical affinities of the standard states and 1A , 2A  

and 3A are the chemical affinities of the corresponding states and R is the gas 

constants. 

4.2.1 Steady State Analysis 

In steady state the concentrations of intermediate species X and Y remain time 

independent, that is  

 
 

      1 2 1 2

X
A X X Y 0

s

s s s s s
d

k k v v
dt

      (44) 

 
 

     2 3 2 3

Y
X Y Y 0.

s

s s s s s
d

k k v v
dt

      (45) 

where  X
s
and  Y

s
 are the concentrations of X and Y in steady state respectively. 

Notice that the equation.(44) and (45) gave the new identity that is   

0.0 0.5 1.0 1.5
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Lotka Voltera : Limit Cycle
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 1 2 3

s s sv v v v    (46) 

After solving equation (44) and (45), the steady state concentrations of X and Y are 

obtained as,  

  
 

       3 3 1

1 2 2

X Y , X , Y A .
A

s s s sk k k

k k k

 
    
 

 (47) 

The stability of steady state has been investigated by Jacobian matrix10-15 and 

Lyapunov direct method of stability of motion at constant T and p in subsequent 

sections.  

4.2.2.   Stability Analysis  

In this case, the concentration of intermediate species, X and Y are no more time 

independent, that is  

 
 

     1 2

X
A X X Y 0

d
k k

dt
    (48) 

 
 

    2 3

Y
X Y Y 0.

d
k k

dt
    (49) 

The rate of entropy production in this case is given by   

 31 2
1 2 3 0v v v

T T T
    

AA A
 (50) 

where   is positive definite as per the dictates of second law of thermodynamics. 

Notice that at constant the temperature and pressure, the  is the function of and 

mole numbers of A, X, Y and P. Thus, we have 

  A, X, Y, P 0.    (51) 

In the beginning of our analysis we assumed that [A] and [P] are constant and hence 

equation (51) reduces to  

  X, Y 0.    (52) 

Now, the concentration of X and Y are perturbed by sufficiently small amount X

and Y then, we have  

 X Y
X Y

  
 

  
 

 (53) 

where 
sL   , as CTTSIP identifies the excess rate of entropy production as 

Lyapunov function. Now, from equation (52) and (53), we obtain 

 

   

 

1 21 1 2 2
1 2

3 3 3
3

X X X X X

X X

T Tv v
v v

T T

T v
v

T

  
   

    

 
 

 

A AA A

A A
 (54) 

and  
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   

 

1 21 1 2 2
1 2

3 3 3
3

Y Y Y Y Y

Y Y

T Tv v
v v

T T

T v
v

T

  
   

    

 
 

 

A AA A

A A
 (55) 

From the expressions of rate equations and affinities, we further obtain 

     31 2
1 2A , Y , 0

X X X

vv v
k k

 
  

  
 (56) 

   31 2
2 30, X ,

Y Y Y

vv v
k k

 
  

  
 (57) 

 
 

 
 

 
 1 2 3

, , 0
X X X X X

T T TR R  
   

  

A A A
 (58) 

 
   

 
 

 
1 2 3

0, ,
Y Y Y Y Y

T T TR R  
   

  

A A A
 (59) 

Using equation (54) and (55) and on substituting quantities from equations (56)-(59) 

in equation (53), we have  

 

        

      

1 2
1 2 2 1

32
2 3 3 2

A Y Y A X

X Y X Y

sL k k R k k
T T

k k R k k
T T

 



 
      

 

 
    
 

A A

AA
 (60) 

which is equivalent to  

 

 
 

 
 

1 2
1 2 2 1

32
2 3 3 2

X

X

Y
.

Y

sL v v R v v
T T

v v R v v
T T





 
    
 

 
    
 

A A

AA
 (61) 

As per the CTTSIP37-40, we have here identified, 
sL   the excess rate of entropy 

production is required Lyapunov function for stability analysis. For steady state, we 

have 

 
1 2 3 .v v v v    (62) 

This identity reduces equation (61) gives 

 
   

31 2 2X Y
.

X Y
sL v v

T T T T

   
      

   

AA A A
 (63) 

We now derive the rate equations of perturbation coordinates, X and Y  from 

equation (48) and (49) by adopting the identical procedure which is applied earlier 

for obtaining Lyapunov function, thus we have,  

 
 

 
X

X, Y
d

f
dt

  (64) 

 
 

 
Y

X, Y .
d

g
dt

  (65) 
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Thus, for sufficiently small and finite perturbation of mole numbers of X and Y from 

original state, gives 

 
 X

X Y
X Y

d f f

dt
  
   

  
  

 (66) 

 
 Y

X Y
X Y

d g g

dt
  
   

  
  

 (67) 

where 

        1 2X, Y A X X Y andf k k   (68) 

       2 3X, Y X Y Y .g k k   (69) 

From equation (68) and (69), the expressions of rate equations in perturbation space 

are obtained as,   

      1 2 2A Y , X and
X Y

f f
k k k

 
   

 
 (70) 

    2 2 3Y , X .
X Y

g g
k k k

 
  

 
 (71) 

Thus, using equation (70) and (71) in equation (66) and (67), we obtain the required 

expressions for perturbation coordinates as 

 
 

      1 2 2

X
A Y X X Y and

d
k k k

dt


     (72) 

 
 

    2 2 3

Y
Y X X Y,

d
k k k

dt


     (73) 

which are equivalent to 

 
 

 
   1 2 2

X X Y
and

X Y

d
v v v

dt

  
    (74) 

 
 

 
   2 3 2

Y Y X
.

Y X

d
v v v

dt

  
    (75) 

In case of steady state, one has  

 
 

 2

X Y

Y

d
v

dt

 
   (76) 

 
 

 2

Y X
.

X

d
v

dt

 
  (77) 

Now, we scrutinize the stability of the process by using the fabrics of the Lyapunov’s 

direct method of stability of motion. For this purpose we must require the total time 

derivative of Lyapunov function, 
sdL dt which is obtained from equation (63) as 

 
   X Y

.
X Y

s
d ddL

dt dt dt

  
 
 

 (78) 

The operative expression of sdL dt is obtained from equation (78) by differentiating 

perturbation coordinates with time, that is   
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        
 

    
 

1 2
1 2 2 1

32
2 3 3 2

X
A Y Y A

Y
X X

s
ddL

k k R k k
dt T T dt

d
k k R k k

T T dt





 
    
 

 
    
 

A A

AA
 (79) 

On substituting the values of  d X dt and  d Y dt  in equation (79), the final 

expression for  
sdL dt  is obtained as, 

 

        

       

    

     

1 2
1 2 2 1

1 2 2

32
2 3 3 2

2 2 3

A Y Y A

A Y X X Y

X X

Y X X Y

sdL
k k R k k

dt T T

k k k

k k R k k
T T

k k k

 

 

 
    
 

  

 
    
 

  

A A

AA
 (80) 

However, using equation (74) and (75), we have   

 
 

   
   

 
 

 
 

 

1 2
1 2 2 1 1 2 2

32
2 3 3 2 2 2 3

1 X Y

X X Y

1 X Y
.

Y X Y

sdL
v v R v v v v v

dt T T

v v R v v v v v
T T

 

 

   
       

   

   
       

   

A A

AA
 (81) 

In case of steady states, equation (81) becomes 

 
     

2 2

31 2 2Y X
X Y X Y

sdL v v

dt T T T T
 

  
       

   

AA A A
 (82) 

which is equivalent to 

 31 2 2
2 2Y X.sdL

k v k v
dt T T T T

 
  

       
   

AA A A
 (83) 

In this analysis, it shows that the gradient of Lyapunov function is finite and positive 

definite. Hence, the behaviour of perturbation coordinates, X  and Y with time is 

important for the identification sign of 
sL and 

sdL dt , and then the stability of the 

state. Using Mathematica software, the graphical presentations of perturbation 

coordinates,
sL and sdL dt  with time are shown in following figures. 

Case 1: Steady state  
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Fig 3: Oscillating behavior of X and Y with time  

 

 
Fig 4: Sustain oscillations of 

sL and 
sdL dt with time  
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From Fig 3-5, it indicates that the steady state is unstable on perturbation. It is clear 

that small disturbances to intermediates species create inception of sustain 

oscillation. system parameters are changed on perturbation so that the system 

passes through the bifurcation limit cycle or periodic orbit develops surrounding the 

steady state.  

Case 2: Chemical oscillations 

1. There is domain in periodic oscillations which gives clear instability on 

perturbation of intermediate coordinates. The behaviour of 
sL  and 

sdL dt

with time, are shown following figures.  Note that the graphical presentation 

of 
sL  and 

sdL dt  shows they have same (positive) signs. This indicates that 

the perturbation is not decayed rather it grows with time. Hence, small 

perturbation in this region is unstable and uncontrollable. 

2.  

 

                 Fig 6:  Unstable state as 0sL  and 0sdL dt   
             have positive (same) signs   

 

3. At certain points of chemical oscillations, perturbation leads to formation of 

another pattern of oscillations of coordinates. From graphical presentation of 

Mathematica software shows that these oscillations grow with time beyond 

the control. This is again the clear case of instability of the process.  
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t
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                 Fig 7:  Unstable state as 
sL and 

sdL dt are oscillating  

   and growing with time  

               

4. There is small domain where the perturbation leads damped oscillations. The 

oscillations decay with time and tend to diminishes on original trajectory. In 

this case there are small fluctuations in the beginning of onset of 

perturbation but these fluctuations gradually disappear and trajectory tends 

to converge on original trajectory. In this event the stability of the process is 

guaranteed as per the Lyapunov analysis.  

 

                 Fig 8: Stable state as sL and sdL dt are oscillating  

        and decaying with time  

 

 

5. There is domain where the stability is clearly visible because sL  and sdL dt  

have definite signs. In this case, 0sL   and 0sdL dt   and tend to vanishes on 

real trajectory. This shows the stability of the process as per the Lyapunov’s 
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direct method of stability of motion.  The domain with this property is very 

small.    

 

 

                  Fig 9: Stable state as 0sL  and 0sdL dt  (opposite signs)  

 

4.3.   Brusselator Model 

In the previous section we have seen that how the tools of Lyapunov’s direct method 

of stability of motion deal to study the stability analysis of oscillatory behavior of 

Lotka-Volterra model32-36. Although this model generates sustained oscillatory 

behavior from the simple chemical reaction with mass action kinetics, but it is not an 

appropriate description of any actual chemistry of ecological system. It is successful 

in generating the oscillatory behaviour. The model has an oscillatory solution for any 

values of the rate constant and food supply, A and initial values of X  and Y . The 

amplitude and period of oscillations are obtained depend on all of these quantities; 

there is an infinite array of oscillatory solutions. If the system is perturbed, it 

continues to oscillate, but with a new period and amplitude, until it is perturbed 

again. In the presence of any significant amount of noise, the behavior would hardly 

be recognizable as periodic, since it would constantly be jumping from one 

oscillatory behavior to another. Real chemical system does not behave this way. This 

oscillates only within a finite range of parameters, and they have a single mode of 

oscillation, to which they return if the system is perturbed. The first chemically 

respectable model was proposed by Prigogine (1968)5 and dubbed the ‘Brusselator’ 

by Tyson (1973)42-45. In this paper, we shall discuss the thermodynamic stability of 

the Brusselator model by Lyapunov function analysis. 

We consider a Brusselator model reaction37-40, which exhibits oscillations in finite 

limits of concentrations at constant temperature and pressure, namely    
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1

2

3

4

A X

B X Y D

2X Y 3X

X P

k

k

k

k



  

 



 (84) 

The net reaction of this scheme is  

 A B D P.    (85) 

We assume the concentrations of the reactants A  and B are maintained at a desired 

nonequilibrium value through appropriate flows. The products D and P are removed 

as they are formed. We also assume the reaction occurs in a solution that is well 

stirred, hence homogeneous. If we further assume that all the reverse reactions are 

insignificant, they can be neglected. As per the chemical kinetics46-48, the rate 

equations for the given model reaction in terms of extent of advancement of 

chemical reaction, read as, 

  1
1 1A 0

d
k v

dt


    (86) 

   2
2 2B X 0

d
k v

dt


    (87) 

    
23

3 3X Y 0
d

k v
dt


    (88) 

  4
4 4X 0

d
k v

dt


    (89) 

 
 

          
2

1 2 3 4 1 2 3 4

X
A B X X Y X

d
k k k k v v v v

dt
         (90) 

 
 

      
2

2 3 2 3

Y
B X X Y

d
k k v v

dt
     (91) 

where            A , B , X , Y , D  and E are molar concentrations of the species 

A, B, X, Y, D and E respectively,  1, 2, 3, 4ik i   is the rate constant, 

 1, 2, 3, 4iv i  is the rate of chemical reaction. There is an initial temporary 

behavior during which the intermediates show normal behavior of progression. After 

this, however, the system begins to move away from the steady state. The 

concentration of X and Y begins to oscillate and their rate becomes nonzero.  

For constant concentration of A and B, we obtain sustain oscillations and 

intermediates oscillate in the finite limit of concentrations. However, for closed 

system that concentration of A and B are no more time independent and oscillations 

decay in time.  

The oscillatory behaviour of X and Y are drawn by using Mathematica-10 Software 

(Fig10, 11). For the purpose following typical values of rate constants and 

concentrations of reactants and products are used for simulation:  
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Table 1.2 
1

1 1k s  6 2 1

2 1k dm mol s   
6 2 1

3 1k dm mol s   1

4 1k s  

  3A 1mol dm    3B 3mol dm  

  3D 1mol dm    3P 1mol dm  

  3X 1
s

mol dm    2 3Y 2 10
s

mol dm    

 

 

 
Fig 10: Variation of X and Y with time 

 

 
Fig 11:  Maximum and minimum values (Limit Cycle)  
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Prior to analysis by Lyapunov function, we take brief survey of relevant aspect of 

steady state and oscillatory state. 

4.3.1  Steady State Analysis 

In steady state situation, the concentration of intermediate species, X and Y are the 

time independent, that is   

 
 

          
2

1 2 3 4

X
A B X X Y X 0

s

s s s sd
k k k k

dt
      (92) 

 
 

      
2

2 3

Y
B X X Y 0

s

s s sd
k k

dt
    (93) 

Solving equations (92) and (93), steady state concentrations of X and Y are obtained 

as 

     1 2
1 4 1 2 3

4

A , A Bs s s s k k
v v k v v

k
     (94) 

      
 
 

1 4 2

4 3 1

B
X A , Y

A

s sk k k

k k k
   (95) 

4.3.2  Stability by Lyapunov Analysis 

In this case, the concentration of intermediate species, X and Y are no more time 

independent, that is  

 
 

          
2

1 2 3 4

X
A B X X Y X 0

d
k k k k

dt
      (96) 

 
 

      
2

2 3

Y
B X X Y 0 and

d
k k

dt
    (97) 

 1 4 2 30, 0v v v v     (98) 

The rate of entropy production in this case is given by   

 31 2 4
1 2 3 4 0v v v v

T T T T
     

AA A A
 (99) 

where   is positive definite as per the dictates of second law of thermodynamics. 

The expression for the chemical affinities for unperturbed system are given by the 

chemical thermodynamics and in this case they are 

     1 1 ln A ln XR
T T



  
A A

 (100) 

       2 2 ln B X ln Y DR
T T



  
A A

 (101) 

     3 3 ln Y ln XR
T T



  
A A

 (102) 

     4 4 ln X ln PR
T T



  
A A

 (103) 
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Now, the concentration of X and Y are perturbed by sufficiently small amount, X

and Y by keeping the concentration of A, B, D and P constant, we then have  

 X Y
X Y

sL  
 

   
 

 (104) 

Now, from equations (103) and (104), we obtain 

 

   

   

1 21 1 2 2
1 2

3 43 3 4 4
3 4

X X X X X

X X X X

T Tv v
v v

T T

T Tv v
v v

T T

  
   

    

  
   

   

A AA A

A AA A
 (105) 

and  

 

   

   

1 21 1 2 2
1 2

3 43 3 4 4
3 4

Y Y Y Y Y

Y Y Y Y

T Tv v
v v

T T

T Tv v
v v

T T

  
   

    

  
   

   

A AA A

A AA A
 (106) 

From the expressions of rate equations (86)-(89) and affinities, eqs.(100)-(103), we 

obtain 

     31 2 4
2 3 40, Y , 2 X Y ,

X X X X

vv v v
k k k

  
   

   
 (107) 

  
231 2 4

30, 0, X , 0
Y Y Y Y

vv v v
k

  
   

   
 (108) 

 

 

 
 

 

 

 
 

 

1 2

3 4

, ,
X X X X

,
X X X X

T TR R

T TR R

 
  

 

 
  

 

A A

A A
 (109) 

 

   

 

 

 
 

1 2

3 1

0, ,
Y Y Y

, 0
Y Y Y

T T R

T TR

 
  

 

 
 

 

A A

A A
 (110) 

On substituting the quantities from equations.(107)-(110) in equation (104), we have  

 

    

 
 

 
 

 

32 4
2 3 4

1 2 3 4

23
3 2 3

B 2 X Y X

X
X

X Y
Y

sL k k k
T T T

R
v v v v

R
k v v

T

 





 
     

 

   

 
    
 

AA A

A

 (111) 

In case of steady state equation (111) becomes 

       
23 32 4

2 3 4 3B 2 X Y X + X YsL k k k k
T T T T

 
   

     
   

A AA A
 (112) 

We have here identified, sL   the excess rate of entropy production is required 

Lyapunov function for stability analysis.  
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We now derive the rate equations of perturbation coordinates, X  and Y  from 

equations (96) and (97). Adopting identical procedure which is applied for obtaining 

Lyapunov function, we identify,  

 
 

 
X

X, Y
d

f
dt

  (113) 

 
 

 
Y

X, Y .
d

g
dt

  (114) 

Thus, for sufficiently small and finite perturbation of mole numbers of X and Y from 

original state, gives 

 
 X

X Y
X Y

d f f

dt
  
   

      
 (115) 

 
 Y

X Y
X Y

d g g

dt
  
   

      
 (116) 

where 

             
2

1 2 3 4X, Y A B X X Y X andf k k k k     (117) 

       2
2 3X, Y B X X Y .g k k   (118) 

From equations.(13) and (14), the expressions required for calculation of rate 

equations in perturbation space are obtained as,   

       
2

2 3 4 3B 2 X Y , X , and
X Y

f f
k k k k

 
    

 
 (119) 

       
2

2 3 32 , .
g g

k B k X Y k X
X Y

 
   

 
 (120) 

Thus, from equations (119) and (120), the required expressions for perturbation 

coordinates, are obtained as 

 
 

       
2

2 3 4 3

X
B 2 X Y X X Y

d
k k k k

dt


       (121) 

 
 

       
2

2 3 3

Y
B 2 X Y X X Y.

d
k k k

dt


     (122) 

In steady state situation equations (121) and (122) become 

 
 

       
   

2

3 4 3 3 4 3

X X Y
X Y X X Y

X Y

d
k k k v v v

dt

  
        (123) 

 
 

    
   

2

3 3 3

Y X Y
X Y X X Y

X Y

d
k k v

dt

  
 

 
       

 

 (124) 

Now, we scrutinize the stability of the process by using the fabrics of the Lyapunov’s 

direct method of stability of motion. For this purpose we must require the total time 

derivative of Lyapunov function, sdL dt which is obtained as 

 
   X Y

.
X Y

s
d ddL

dt dt dt

  
 
 

 (125) 
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The required expression of sdL dt is obtained from eq.(111) by differentiating 

perturbation coordinates with time, that is   

 

    
 

 
 

 

 
 

 
 

32 4
2 3 4

1 2 3 4

23
3 2 3

X
B 2 X Y

X

X

Y
X

Y

s
ddL

k k k
dt T T T dt

dR
v v v v

dt

dR
k v v

T dt







 
   
 

   

 
    
 

AA A

A

 (126) 

On substituting the values of  d X dt and  d Y dt  in equation (126), the final 

expression for  sdL dt  is obtained as, 

 

    

        

 
          

 
 

          

32 4
2 3 4

2

2 3 4 3

2

1 2 3 4 2 3 4 3

2 23
3 2 3 2 3 3

B 2 X Y

B 2 X Y X X Y

B 2 X Y X X Y
X

X B 2 X Y X X Y
Y

sdL
k k k

dt T T T

k k k k

R
v v v v k k k k

R
k v v k k k

T

 

 

 

 
   
 

    

        

 
       
 

AA A

A

 (127) 

In case of steady state the total time derivative of Lyapunov function reads as, 

 

      
   

 
   

32 4
2 3 4 3 4 3

23
3 3

X Y
B 2 X Y

X Y

X Y
X

X Y

sdL
k k k v v v

dt T T T

k v
T

 

 

  
         

  
        

AA A

A
 (128) 

From above mathematical expressions of sL  and sdL dt , it is difficult to interpret 

the stability of the process because several undetermined components are involved 

there.  

 

Results and conclusion 

 It is easy to predict the results after systematic computation and simulation of these 

expressions by Mathematica software.  

Notice that in expressions of SL  and  SdL dt  are highly nonlinear and involve several 

complex terms. Due to which it is difficult predicts the stability and instability of the 

process. However, these complex equations are easily solved by Mathematica-10 

commercial software. The results derived from software are given below:  

Case 1: Steady state  
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Fig 12: X and Y oscillate and grow with time  

 

 

 
 

Fig 13: 
sL and 

sdL dt oscillate and grow with time  

Fig 13 establishes that the steady state of Brusselator model of chemical 

organization is unstable on perturbation. It is clearly observed that small 

disturbances to intermediates species lead to onset of oscillations which grow 

steeply with time. On perturbation system parameters are varied so that the system 

passes through the bifurcation limit cycle or periodic orbit develops surrounding the 

steady state.  

 

2 4 6 8 10 12

0.10

0.05

0.00

0.05

0.10

Variation of X and Y with time

5 10 15

600

400

200

0

200

400

600

Ls and dLs dt with time

δX 

δY 

 

 



NeuroQuantology| January 2023 | Volume 21 | Issue 1 | Page221-249 | doi: 10.48047/nq.2023.21.01.NQ20016                            

Megha Sawangikar / Study of stability Analysis of Chemical reactions 

 
                                                                             245 
 

 
Fig 14: X and Y spiral out around steady state  

Case 2: Chemical Oscillations 

1. There is domain where the stability is clearly visible because 
sL  and 

sdL dt  have 

definite signs. In this case, 0sL   and 0sdL dt   and tend to vanishes on real 

trajectory. This shows the asymptotic stability of the process as per the 

Lyapunov’s direct method of stability of motion.   

 

      Fig 15:  Stable state as 0sL  and 0sdL dt    
 

2. There is small domain where the perturbation leads damped oscillations. The 

oscillations decay with time and tend to diminishes on original trajectory. In this 

case there are small fluctuations in the beginning of onset of perturbation but 

these fluctuations gradually disappear and trajectory tends to converge on 

original trajectory. In these situations the stability of the process is guaranteed 

as per the Lyapunov analysis.  
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                 Fig 16:  Stable state as 
sL and 

sdL dt are oscillating  

        and decaying with time  

 

3. At certain points, perturbation leads to formation of another pattern of 

oscillations of coordinates. From graphical presentation shows that these 

oscillations grow with time beyond the control. This is again the clear case of 

instability of the process.  

 
Fig 17: Unstable state as sL and sdL dt oscillate and grow with time  

  

4. There is domain in periodic oscillations which gives clear instability on 

perturbation of intermediate coordinates. For example, when perturbation is 

executed before the onset of oscillations, the analysis shows that the process is 

unstable. The behaviour of sL  and sdL dt with time, are shown in figures.  Note 

that the graphical presentation of sL  and sdL dt  shows they have same 

(positive) signs. This indicates that the perturbation grows with time. Hence, 

small perturbation in this region is unstable and uncontrollable. 
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                 Fig 18: Unstable state as 0sL  and 0sdL dt  have same  

 

Our analysis shows that the chemical oscillations in Brusselator model are very 

sensitive to small perturbation. There is big domain of chemical oscillations which is 

susceptible to instability of the process on effect of perturbation. In some domain, 

perturbation tends to onset of oscillatory behaviour. There is very tiny domain over 

which the stability on perturbation is guaranteed.  
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