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Abstract: 

Air is necessary for every living thing to breathe, be it plant, animal and human. Smoking, embers, coal ash, 

chemicals powder, gases, and aromas are all of wastes released into the air, either individually or in 

combination. Also Pollution caused by anthropogenic activities in the surface water leads to high demand for 

water. Machine Learning takes the lead in forecasting the quality of the air and water in environmental 

monitoring. For environmental protection, it is more crucial to predict gaseous pollutants in the air and Physio-

chemical contaminants in the water. In this article, the environmental assessment forecasting is made using 

the Ordinary Least Squares model. Also Pearson Correlation Coefficient (PCC) technique is employed to find 

correlations between quality indicators from both datasets of air molecules and water molecules. Based on the 

prediction level and error rate, the results of this work portray that the Least Squares method provides good 

results. 

Keywords: Air Quality, Water_Potabilty, Environmental Assessment, Linear Regression, Ordinary Least 
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Introduction 
Air pollution and water pollution are two issues 

that are intertwined with globalization. These two 

issues highlighted in the research arena of 

environmental engineering [1–2] [20]. The World 

Bank's Environment Performance Index-2022 

ranks India last. This means that India is among the 

countries with the worst environmental health. 

India ranks fifth out of 180 countries, with a score 

of 18.9. Statistics show that 63 percent of India's 

population is severely affected by air pollution. 

However, a recent study has found that women 

are more affected by air pollution than men. This 

study presented at the European Respiratory 

Society International Congress in Barcelona, Spain, 

found that breathing diesel fumes from vehicles 

caused changes in women's blood cells. 5 middle-

aged men and women participated in this study. In 

examining them, it was found that both men and 

women were likely to suffer from diseases such as 

inflammatory diseases and heart diseases due to 

air smoke [23-25]. But apart from these, scientists 

have been shocked to see that many more 

diseases occur in women. 

Environmentalists are developing their new 

methods by utilizing emerging methodologies to 

focus and predict their effects. Pollution from 

industrial and residential sources is a concern in 

the environment. Water-related pathogens and 

airborne diseases are caused because of the 

reason of pollution. An industrial waste 

contributes more to pollution than domestic 

wastewater, and the mineral industries generate a 

large portion of these industrial effluents [3-8].  

      Regression and statistical approaches are 

omnipresent in the real-time applications. People 

from various professions are attempting to use 

statistics to focus on making their jobs easier. 

Machine learning algorithms are the driving force 
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behind such widespread use of statistics and 

regression analysis [17]. Regression is a technique 

for simulating a line of best fit using prognostic 

value [5] [7].  Linear Regression is a rudimental 

algorithm with which every Machine Learning 

aficionado begins.    

This article will concentrate on the challenges 

produced by water and air defilement. The rest of 

this article is broken down into subsequent 

portions. 

1. Data source: All details regarding the 

dataset used in this study can be found here. 

Molecules in the input dataset, records and its 

description with criteria are also given in this 

portion. 

2. Bivariate analysis: Analysing the 

association betwixt the parameters in the dataset 

by using PCC explored. 

3. Methodology: Mathematical expressions 

(Ordinary Least Squares Method, which was 

derived using Hebb's Rule) presents in this portion. 

Also It contains fundamental theory of regression 

analysis (LR Method). 

4. Results and Discussion: Prediction 
performance and error rate provide in this portion. 
Finally, the conclusion portion describes LR’s 
performance for prediction and future direction. 

 

Applied Methodology 

A. Pearson Correlation Matrix 

We analysed the PCC method to assess the air 

and water quality variables in this part. This 

allowed us to demonstrate the correctness of the 

Machine Learning technique, which is focused on 

selecting features and providing justifications for 

selecting appropriate parameters for forecasting 

fresh data [22]. The correlation matrix [5] was 

calculated once the data sampling was estimated 

by utilizing the below formula.  
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√  ∑     ∑         ∑      ∑    
              

 

 

 

 
B. Preliminaries  

Hebb's rule has been used to explain it. W, which 

is referred to as the weight matrix, can be 

obtained to reduce the error. 
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is the pattern's output vector, and n is the number 

of patterns. To reduce the error rate of this work, 

the Least Squares method (Widro – Hoff law) may 

be used to obtain the weight matrix w. 

When a specific pattern is observed 

                                                                                           

When a new node is added to the network, the 

result yv=Wxv should be as close to the desired 

vector dv as possible, where v = 1, 2,..., n. To 

reduce the MSE, the W weight should be chosen ( 

Mean Squared Error). 

From the equation (1) 
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The equation is as follows: 

∑       
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This derivation can be combined to form a mono 

matrix 
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     is invertible, the w that minimizes 

the error is bestowed 
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The equation can be explained using the Hebbian 

rule weight matrix  ∑   
 
     

    and the inverse of 

∑   
 
     

  . 

Let X be the matrix whose columns are the input 

patterns, and D be the matrix whose columns are 

the input that agrees with the desired output 

vectors. Finally, we had the equation written down 

as 

                                                                              

This Mathematical formulation derived from the 

usage of Data Mining concepts and techniques 

includes in Ref [21]. 

C. Linear Regression 

In Machine Learning, linear regression is probably 

the most well-known and well-understood 

technique. It’s a linear model. The specified input 

(X) and the single output (Y) are assumed to 

communicate linearly in this paradigm (Y). 

Specifically, Y is derived from the input's linear 

connection (X). For example, in the case of a 

simple regression problem (a single X and a single 

Y), the model formation is represented as follows: 

                                                                                

Where X is the regression coefficient and Y is the 

dependent variable. The slope of the line is b, and 

the intercept is a (the value of y when x = 0). A 

useful numerical measure of association between 

two variables is the correlation coefficient, which 

is a value between -1 and 1 indicating the linear 

association of the actual observations for the two 

factors. The linear regression model's formula 

involves assigning one factor value to each 

column, which is a coefficient. In addition, a 

coefficient is added, providing the line that moves 

above and below on a plot that is represented in a 

two-dimension. It is commonly referred to as the 

intercept in OLS.  

D. Ordinary Least Squares Method 

There are a variety of regression models available, 

the most popular of which is Ordinary Least 

Squares (OLS). Only the numeric values are 

acceptable for working with this technique and the 

outcome of this work is also numeric. When there 

are multiple inputs, we can use Ordinary Least 

Squares to estimate the coefficient values. The 

Ordinary Least Squares method attempts to 

minimize the mean squared residuals. This means 

that, given a regression line thru the data, we 

determine the distance between each data point 

and the regression coefficient, measure it, and add 

all the squares of the errors. Ordinary least 

squares tend to reduce this quantity. 

 

Figure 1: Best fit for Water Potability 
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Figure 2: Best fit for Air Quality 

This system describes the data as a matrix and 

employs basic mathematical operations to 

evaluate the optimal coefficient values. It implies 

that almost all the data should be readily 

accessible, as well as sufficient memory to match 

the data by performing mathematical calculations. 

This method is extremely fast to compute. The OLS 

approach is used to predict water quality 

parameters for time series analysis in this article. 

Materials  

E. Data Sourcing 

The Air Quality dataset gathered contains 13 
attributes, including PM2.5 and PM10 (fine 
particulate matter), Nitrogen Monoxide or Nitric 
Oxide, Nitrogen dioxide, Nitrogen Oxides, Gaseous 
ammonia, Carbon Monoxide, Sulphur dioxide, 
Ground-level ozone (O3), Benzene, Toluene, 
Xylene, and Air Quality Index. The Water Potability 
dataset includes 10 parameters: pH, Hardness, 
Solids, Chloramines, Sulphate, Conductivity, 
Organic Corban, Trihalomethanes, Turbidity, and 
Potabilit
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Table 1: Air Quality Data Description  
 

StationId Date PM2.5 PM10 NO NO2 NOx NH3 CO SO2 O3 Benzene Toluene Xylene AQI AQI_Bucket 

AP001 01/01/2020 59.64 88.85 1.67 12.12 7.81 14.99 0.77 17.53 57.26 0.89 3.38 0.12 96 Satisfactory 

AP001 04/01/2020 22.79 38.35 2.27 18.79 11.83 14.34 0.64 19.87 23.59 0.6 5.88 0.24 47 Good 

AP001 07/01/2020 69.49 97.7 1.95 12.04 8 20.46 0.68 17.89 59.37 0.71 1.24 0.1 109 Moderate 

AP005 03/01/2019 148.04 285.83 25.44 103.9 75.95 16.96 1.38 29.16 93.29 5.72 9.61 4.75 319 Very Poor 

AP001 22/01/2019 100.34 165.55 20.01 60.14 48.26 20.43 0.85 13.57 24.82 0.06 0.08 0.1 230 Poor 

 

Table 2: Water Potability Data Description  
 

ph Hardness Solids Chloramines Sulfate Conductivity Organic_carbon Trihalomethanes Turbidity Potability 

8.316766 214.3734 22018.42 8.059332 356.8861 363.2665 18.43652 100.3417 4.628771 0 

9.44513 145.8054 13168.53 9.444471 310.5834 592.659 8.606397 77.57746 3.875165 1 

 

0 is denoted as potable and 1 is denoted as not potable in the potability column identified from Table  
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Result and Discussion 

A. Correlation between the Air Quality 
Parameters 

 
PM2.5 portrayed the positive relationship 

with PM10 0.83, NO 0.38, NO2 0.36, NOx 0.37, 

NH3 0.42, CO 0.33, SO2 0.19, O3 0.08, Benzene 

0.33, Toluene 0.29, and Xylene 0.08. PM10 

portrayed the positive connection with NO 

0.41, NO2 0.41, NOx 0.41, NH3 0.37, CO 0.41, 

SO2 0.25, Benzene 0.32, Toluene 0.31, and 

Xylene 0.04. NO portrayed the positive 

association with NO2 0.49, NOx 0.88, NH3 0.29, 

CO 0.33, SO2 0.13, Benzene 0.31, Toluene 0.31, 

and Xylene 0.04.  NO2 portrayed the positive 

link with NOx 0.62, NH3 0.35, CO 0.24, SO2 0.23, 

O3 0.12, Benzene 0.31, Toluene 0.31, and 

Xylene 0.04. NOx portrayed the positive 

correlation with NH3 0.31, CO 0.30, SO2 0.16, 

O3 0.01, Benzene 0.29, Toluene 0.26, and 

Xylene 0.03.  

 

Figure 3: Correlation Map of Air Quality 

NH3 portrayed the positive association 

with NH3 0.31, CO 0.22, SO2 0.09, O3 0.09, 

Benzene 0.18, Toluene 0.23, and Xylene 0.03. 

CO portrayed the positive connection with SO2 

0.08, Benzene 0.21, Toluene 0.21, and Xylene 

0.09. SO2 portrayed the positive relationship 

with O3 0.14, Benzene 0.16, Toluene 0.13, and 

Xylene 0.29. O3 portrayed the invertible 

correlation with PM10 -0.04, NO -0.04, CO -

0.02, Benzene -0.01 and positive relationship 

with Toluene 0.05, and Xylene 0.05. Benzene 

portrayed the positive association with Toluene 

0.45, Xylene 0.39 and Toluene portrayed the 

positive connection with Xylene 0.44. 

 

B. Correlation between the Air Quality  
Parameters 

PH portrayed the positive correlation with 

Trihalomethanes 0.03, Organic_Corban 0.04, 

Conductivity 0.02, Sulphate 0.02, Hardness 

0.082 and invertible relationship with Solids -

0.089, Sulphate -0.09, Chloramines -0.013. 

Positive association invented between 

Hardness and Organic_Corban is 0.0036 and 

negative association with Solids -0.047, 

Chloramines -0.03, Conductivity -0.024, 

Trihalomethanes -0.006. Solids portrayed the 

negative association with Chloramines -0.07, 

Trihalomethanes -0.023. 

Sulphate portrayed the invertible 

relationship with Hardness -0.03, Solids -0.027, 

Conductivity -0.018 and Trihalomethanes -

0.012 Solids portrayed the positive relationship 

with Conductivity 0.014, Organic_Corban 0.01, 

Turbidity 0.02. Chloramines portrayed the 

negative connection with Conductivity -0.02, 

Organic_Carbon -0.013 and positive correlation 

with Sulphate 0.027, Trihalomethanes 0.017, 

Turbidity 0.024.  

 

Figure 4: Correlation map of Water Potability 

Conductivity portrayed the positive 

relationship with Organic_Corban 0.021, 
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Trihalomethanes 0.0013, Turbidity 0.0058. 

Negative correlation identified between the 

Organic_Corbon and Trihalomethanes is -

0.013, with Turbidity -0.027. Also another 

invertible association found betwixt the 

Trihalomethanes and Turbidity is -0.019.  

 

 

 

A. Predictive Performance of OLS 

Cross-referencing the predictions of water 
quality parameters and air quality variables is 
done using the results of the regression 

technique. Evaluation measures such as the 
Mean Absolute Error (MAE), Root Mean 
Squared Error (RMSE), and Mean Squared Error 
(MSE) are used to estimate the method's ability 
to produce predicted outcomes Shown in Table 
II. This technique was created using the open-
source Anaconda Navigator (anaconda3), 
which is the most well-known and user-friendly 
environment for Python-based Machine 
Learning, Deep Learning, and Data Science 
applications [16]. The findings confirm the 
hypothesis that a regression technique, such as 
the Least Squares approach, can be used to 
more accurately predict environmental 
assessments, meaning better air and water 
management [9].

Table 3: Regression Results 
 

 

 

 

 

 

 

 

 

 

Figure 5: Performance analysis of OLS 
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Conclusion 

Regression analysis and correlation analysis of 
environmental assessment were used in this 
paper to forecast the minimal number of 
parameters. Regression analysis is frequently 
proposed as a model; they still produce 
satisfying performance when integrated with 
computational intelligence [11]. For issues 
involving these processes, using the 
performance of linear regression may be 
reduced. It's a simple work and was utilized to 
obtain the best line. The model delivers 
moderate results in terms of error rate. For the 
reason of moderate results got from OLS 
method, we will try to implement by using AI 
(Artificial Intelligence) or Hybrid learning 
methods for higher prediction accuracy in the 
future. Another feature of that futuristic model 
is to examine the ability for increasing the 
number of prediction parameters. 
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