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Abstract: Blockchain based security deployments have gained a lot of popularity due to their 
immutable, transparency, traceability, and distributed computing characteristics. Blockchain 
models store data in the form of small chunks (called as blocks), which are linked with each 
other via rule-based unique hashes. A large number of consensus models are defined by 
researchers that allow addition of these blocks to the blockchain. These consensus models 
define block-level rules (mining rules) that must be satisfied before addition of blocks. Due to 
use of distributed computing, blockchains are capable of easily mitigating Finney, Distributed 
Denial of Service (DDoS), Masquerading, Sybil, and other attacks. But as the length of 
blockchain increases, the delay needed to add a block to the chain increases exponentially. This 
is due to the fact that while adding blocks, multiple delay components are needed to be 
incorporated, which include, hashing delay, encryption delay, hash validation (mining) delay, 
block read delay, block write delay, etc. Due to this exponential increase in delay, scalability & 
applicability of blockchain is reduced, which limits its adoption for high-speed large-scale 
deployments. To overcome this limitation, sidechains or blockchain shards were developed, 
which work via dividing the main blockchain into QoS-aware (Quality of Service) smaller chains. 
Each of these chains have the same immutability, traceability, transparency, and distributed 
computing characteristics from main blockchain, but require smaller delay for block mining & 
addition, which improves applicability of the underlying blockchain deployment. But a large 
number of sidechain models are proposed by researchers, and each of them varies in terms of 
computational complexity, security level, QoS performance, scalability, applicability, and other 
performance metrics. Due to such a wide variation in parametric performance, it is ambiguous 
for researchers & blockchain design engineers to identify most suited sidechain for their 
application-specific deployments. To overcome this limitation, a survey of different sidechaining 
models, along with their nuances, advantages, limitations, and future research scopes id 
discussed in this text. Based on this survey, readers will be able to identify different 
sidechaining solutions for their application-specific use cases. This text also compares the 
reviewed models in terms of different performance metrics, which will further assist 
researchers to select most optimum sidechaining models for their deployments. Furthermore, 
this text also evaluates a novel Model Rank Score (MRS) which combines various performance 
metrics in order to assist readers in selection of an optimum sidechaining model for context-
sensitive use cases. 
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1. Introduction 

Blockchains are defined as secure & immutable 
data-structures that cannot be easily 
compromised, and are highly distributed with  

 

traceability & trust characteristics [1]. The 
delay needed to add a block to single 
blockchains is defined via equation 1, 

 (   )    [ (    )   (        )
  (    )]  (   )
 [ (    )   (       )]
  (     ) ( ) 

 

Figure 1. Example of sidechaining for context-
sensitive scenarios 

Where,                         
                     represents various 
operations like addition of block into the chain, 
reading the block from the chain, validating the 
block, mining the block, hashing the block, 
encrypting the bock, and writing the block back 
to the blockchain. From this equation it can be 
observed that, delay needed to add a block 
exponentially increases w.r.t. blockchain size. 
Due to which researchers developed smaller 
sized blockchains, which were termed as 
sidechains or blockchain shards. A typical 
sidechain model is depicted in figure 1, wherein 
Main Blockchain is divided into 3 different 
sidechains, and each of them are context-
sensitive. Sidechain A uses smart contracts, 
while Sidechain B uses faster consensus 
models, and Sidechain C uses high security 
encryption & hashing models, which assists in 
treasury-based deployments. Due to this 
division, value of   in equation 1 is reduced, 
which increases transactional speeds. Similar 
models [2, 3, 4], along with their nuances, 
advantages, limitations, and future research 
scopes are discussed in next section of this 
text. Based on this discussion readers will be 
able to identify high-performance models for 
their application-specific deployments. 
Followed by this, section 3 compares these 
models in terms of different performance 
metrics, that includes computational 
complexity, security level, QoS performance, 
scalability, and applicability. Upon referring this 
comparison, researchers can identify optimally 
performing models for their use cases. Finally, 
this text concludes with some interesting 
observations about the reviewed models, and 
recommends various methods to further 
improve their performance under different 
scenarios. 
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2. Literature Review 

A wide variety of sidechaining models are 
available, which assist in improving QoS 
performance of secure blockchain 
deployments. Each of these models have their 
own characteristics, which makes it highly 
complex to identify optimum models for given 
application use cases. For instance, work in [2] 
proposes use of State Sharding using space 
aware representations (SSSAR) which evaluates 
a trade-off between size of data stored on the 
blockchain, and number of shards generated 
during the process. The model showcased 
reduced memory utilization with higher 
throughput when evaluated on Ethereum 
Networks. But the model requires state 
information to be available before deployment, 
which limits its scalability performance. To 
overcome this limitation, work in [3] proposes 
use of Polynomial Coded Blockchain Sharding 
(PCBS) that aims at achieving an equilibrium 
between security, scalability & decentralization 
across distributed deployments. The model 
uses node-level computations in order to 
evaluate verification functions which assist in 
deployment of coded transactions. The 
sharding process can be observed from figure 
2, wherein each group of 10 transactions are 
combined to form a blockchain shard, which is 
encoded & decoded via verification functions. 

 

Figure 2. Design of Poly Shard Model [3] 

Due to simplicity in sharding process, the 
model is capable of producing sidechains with 
low delay, and lower computational 
complexity, which makes it useful for a wide 
variety of low & medium scale applications. But 
as size of the chain increases, number of shards 
increase exponentially, which increases 
complexity of shard management & limits its 
scalability. To overcome this limitation, work in 
[4] proposes use of Fuzzy Inference Model 
(FIM) for improving sidechain creation 
capabilities. The model uses a combination of 
Bandwidth Consumption (B), Storage 
Consumption (S), & Calculation Consumption 
(C) in order to train a fuzzy rule engine, which 
assists in optimum splitting of blockchains. Due 
to use of BSC metrics, the model is highly 
reconfigurable and has lower complexity for 
creation of sidechains when compared with 
Serial Miner (SM), & Lock Miner (LM) Models, 
deployed on the same blockchain datasets. A 
similar model that uses Smart Contract-based 
Hierarchical Model for Group Key Agreement 
(SCHMGKA) [5] that assists in dividing 
blockchain shards into 2 levels. Initial level uses 
Group Controllers (GCs), while secondary level 
uses Sub Group Controllers (SGCs) to manage 
different sidechains. The model was deployed 
for Vehicular Adhoc Networks (VANETs), but 
can be extended to any wireless network 
deployment with multiple nodes. Due to 
division of sidechain management tasks, the 
model is capable of maintaining lower 
computational complexity, with high-speed 
mining operations, when compared with 
Multiple Attribute Authenticated & 
Contributory Group-based Key Agreement 
(MACGKA) based models.  

An interesting model for shard creation based 
on service-awareness (SSA) is discussed in [6], 
which proposes use of securely scalable 
blockchains based on service requirements. 
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The model linearly increases number of chains 
w.r.t. number of services added into the 
deployments. A typical example of this can be 
observed from figure 3, wherein services like 
‘payments’, ‘domain name assignment’, 
‘registration’, and ‘intellectual property’ are 
added incrementally into the model, and based 
on these additions, number of sidechains are 
increased. 

 

Figure 3. Use of incremental service-aware 
sharding [6] 

The model showcases good performance under 
limited number of users, but the blockchain 
increases if a single service is used by majority 
users. This limitation can be removed via the 
work in [7] which proposes use of Federated 
Learning (FL) to create shards. The model uses 
Direct Acyclic Graph (DAG) with Model 
Aggregation, & Transaction Exchange to train 
the FL Models. It stores all data on Inter 
Planetary File System (IPFS), and mines blocks 
via Raft Consensus, which assists in improving 
shard-level reconfigurability under different 
scenarios. The model was observed to have 
better performance when compared with 
Asynchronous FL (AFL), and Federate Average 
(FA) learning models, which makes it highly 
useful for a wide variety of application 
deployments. A simpler version of this model is 
discussed in [8] which proposes use of splitting 
& aggregating blockchain (SAB) signatures for 
to split of merge blockchains. This process 
allows archiving sidechains which are rarely 
used, and splitting blockchains that are 
constantly updated during transactional 
communications. The model showcases lower 
complexity with higher speed, but requires 

constant chain reconfiguration, which limits it 
deployment capabilities. To overcome this 
issue, work in [9] proposes a simpler method to 
Reconfigure Blockchains via Clustering Process 
(RBCP). The model uses 3 phases, namely, 
presplitting, splitting & post-splitting to select 
cluster heads, that decide whether to split or 
merge blocks via multiple evaluation criterions. 
These criterion include, speed-awareness, 
energy awareness, security awareness, 
complexity awareness, etc. and can be tuned as 
per application requirements. The model is 
highly reconfigurable, which makes it useful for 
large-scale deployments, but requires complex 
management processes, which increases delay 
& reduces throughput w.r.t. number of split-
based sidechains. Effect of this limitation can 
be reduced via use of Parallel Middle Blocks 
(PMBs) [10] which uses stochastic process for 
continuous sharding, thereby assisting in 
improving validation & shard creation 
performance under different network 
scenarios. This model’s performance can be 
extended via work in [11], wherein researchers 
have proposed use of Two-way Peg Model 
(TPM), that dynamically estimates trust-levels 
for different miner nodes, and selects them for 
efficient mining process. Due to this dynamic 
miner selection process, the proposed model 
showcases lower storage cost, better security 
performance, and lower processing delay when 
compared with Proof of Work (PoW) based 
blockchain, and Threshold based Sidechain 
(TSC) Models, thereby making it useful for a 
wide variety of real-time deployments. Security 
of this model must be evaluated under 
different attacks, and can be extended via use 
of Membership Management with Reduction of 
Failure Probability (MMRFP) [12] for mitigating 
n/2 attacks. The model has higher complexity, 
but can be used for large-scale deployment due 
to constant computational requirements. The 
model doesn’t incorporate fault tolerance, due 
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to which its applicability is limited to networks 
with minimum fault scenarios. To overcome 
this limitation, work in [13] proposes use of 
Trust-Based Shard Distribution (TBSD) which 
deploys Genetic Algorithm (GA) for stochastic 
trust estimation, and assists in reducing 
collusions for malicious miner nodes. The 
model uses a Trust Agent (TA) that performs 
estimation of Miner Trust Management, and 
Shard Distribution mechanisms via parallel 
processing operations. It combines leader 
selection, block commit operation, Reporting 
Subjective Consensus Opinion (RSCO), Local 
Consensus Result (LCR) formation with final 
node trust evaluation for estimation of 
optimum shards under real-time attack 
scenarios. Application of such models for E-
Voting deployments can be reviewed from [14], 
wherein Proof of Stake (PoS) and Proof of 
Credibility (PoC) are combined to form shards 
based on share of voters as observed from 
figure 4, which assists in improving QoS 
performance under large-scale applications. It 
can be observed that due to stochastic 
clustering & stake based sharding, the model is 
capable of removing consensus done via 
malicious nodes, which assists in improving 
security against multiple attacks. But the model 
is highly stochastic in nature, which limits its 
reliability under higher scaled networks. To 
improve this reliability, work in [15] proposes 
use of Queueing Modelling with Game 
Theoretic Model (QM GTM) for continuous 
evaluation of blockchain shards via Nash 
Equilibrium analysis. The model uses a 
Polynomial Time (PT) method to obtain balance 
between shards creation & management 
performance, thereby assisting in improving 
scalability under dynamic communication 
environments. The model showcases lower 
delay than Centralized Optimization (CO), and 
Random with Uniform Distribution (RUD) due 
to inclusion of average transaction 

confirmation time (ATCT) between different 
shard creation processes.  

Similar sharding models that use directed 
acyclic graph (DAG) [16], Blockchain-Based 
Federated Learning (BFL) [17], many objective 
optimization algorithm based on the dynamic 
reward and penalty mechanism (MaOEA-DRP) 
[18], and Reputation based High Incentive 
Blockchain (RHIB) [19] are proposed by 
researchers.  

 

Figure 4. Use of sharding with Honest & 
Malicious Miner Nodes [14] 
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These models augment energy levels, mining 
delay, and throughput parameters during shard 
creation in order to reduce computational 
complexity, while maintaining high security 
performance. These models have higher 
complexity due to use of Machine Learning 
(ML) based methods, which requires high-
power processing miner entities, which limits 
their scalability. To overcome this limitation 
work in [20] proposes use of Verifiable 
Stochastic Function (VSF) for improving self-
balancing & operability equilibrium under 
different conditions. The model’s performance 
is observed to be consistent across different 
scaled networks, and thus can be deployed for 
large-scale sidechain deployments. Extension 
to this model is discussed in [21], wherein 
researchers have proposed use of Two-Phase 
Cooperative Bargaining Game Model (TPCBGM) 
to improve shard creation efficiency. The 
model uses Weak Pareto Optimality (WPO), 
symmetrical performance, covariance with 
respect to translations, restricted 
monotonicity, and covariance with respect to 
positive affine transformations in order to 
create & manage sidechains. Due to which the 
model is able to scale even under multiple 
attack scenarios. To evaluate performance of 
such models, work in [22] proposes Chebyshev, 
Chvátal, and Hoeffding bounds for estimation 
of delay, energy consumption, and throughput 
bounds for different sidechain deployments. 
This model must be used for evaluating 
performance of highly efficient sidechaining 
models including, Software-Defined 
Networking based Low-delay, highly Secure & 
Reliable Model for Making Decisions with good 
Emergency Handling capabilities (SDN LSROM 
EH) [23], Reputation aware Aggregation Model 
via Secure & Self-Organized Scalable Sharded 
(RAMSSOSS) [24] blockchains deployed on edge 
computing devices, and a Deep Q Learning 
Network for Sharded Blockchains (DQLNSB) 

[25] that uses Deep Reinforcement Learning 
(DRL) for optimization of shards. These models 
stochastically augment multiple network 
metrics in order to estimate optimal 
combination of parameters for incrementally 
higher performance under different network 
scenarios. Efficiency of these models must be 
validated on different network types, and can 
be further evaluated via use of Joint 
Hypergeometric Distribution based attack 
simulation model [26] for network 
deployments. The model is capable of 
simulating multiple attacks, and then 
estimating their security performance under 
different network configurations. Such models 
must be used to estimate security performance 
of sharded chains. Similar sharded chain 
deployment methods like Validator Rotation 
via Hierarchical Game Theory Model (VR 
HGTM) [27], Permissionless Blockchains with 
Game Theoretic Model (PBGT) [28], Contract-
Theoretic Pricing (CTP) for handling multiple 
transactions on sharded blockchains [29], and 
Extreme Learning Machine (ELM) [30] for 
classification of blocks into active & inactive 
blocks for sidechain creation & management 
are discussed, and validated under different 
simulation conditions.  

Applications of such sidechains are discussed in 
[31, 32], wherein researchers have deployed 
ZyConChain for division of main blockchain into 
sidechain & state chains, and Hierarchical 
Consensus Mechanism for Service-Zone 
Sharding (HCM SZS) for multiple security 
applications. These models use different 
context-aware sidechain creation mechanisms, 
which assist in improving their application-
specific performance. To further improve 
scalability of such models, work in [33, 34] 
propose use of Distributed Stochastic 
Generation (DSG) with Shard Reconfiguration, 
and use of Reputation based Sharding (RBS) for 
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better speed & lower energy consumption 
under different blockchain types. Such models 
use stochastic division of blocks into shards, 
which limits their reliability & consistency 
performance. To overcome this limitation work 
in [35] proposes use of Verifiable Secret 
Sharing (VSS) with controlled stochastic model 
for reducing stochasticity during shard 
selection, thereby improving efficiency during 
sharding process. Security & QoS extensions to 
these models are also discussed by researchers 
in [36, 37], wherein Garlic Onion Routing 
(GOR), and Off-Chain Computation 
Management (OCCM) methods are used to 
incorporate QoS-aware privacy models into 
existing sidechains. These models must be 
evaluated under different transaction types, 
and can be extended via use of load balancing 
(LB) [38], and Gas Consumption-Aware 
Relocation (GCAR) [39] for improving 
applicability & usability performance under 
different application-specific load conditions. 
Applications of such models that use Time 
Variant Multiple Objective based Particle 
Swarm Optimization (TVMOPSO) [40], 
combination of Para-Sharding with DAGs and 
Proof of Participation (PS DAG PoP) Consensus 
Model [41], Land Registry Search Model (LRSM) 
[42] based sidechaining, and Distributed 
Machine Learning (DML) [43] for improving 
security & scalability of blockchain based 
models are proposed, which assist in 
deployment of context-aware models, that can 
be scaled as per application requirements. 
Similarly, work in [44, 45] also propose use of 
DML for Permission Integrated Ring Alliance-
based Training Estimation (PIRATE) model, and 
ML based Sharding Mechanisms (MLSM), which 
assist in improving blockchain deployment 
capabilities are also discussed and tested under 
different test cases. These models allow for 
highly augmented sharded application 
deployments, and have wide variation in real-

time performance. Estimation of this 
performance in terms of computational 
complexity, mining delay, cost of deployment, 
scalability, & QoS performance is evaluated for 
different models, and can be observed from 
the next section of this text. Based on this 
evaluation, researchers will be able to identify 
best models for their application-specific 
deployments. 

3. Result analysis & comparison 

From the literature survey, it can be observed 
that existing shard creation & management 
models utilize Machine Learning (ML) to 
optimize performance under different 
application scenarios. Their performance also 
varies w.r.t. deployed scenario, which makes it 
highly ambiguous for researchers to identify 
best performing model for their application 
deployments. To reduce such ambiguities, this 
section compares the reviewed models in 
terms of computational complexity (CC), 
mining delay (D), cost of deployment (CD), 
scalability (S), & QoS (Q) performance metrics. 
Due to non-uniformity in simulation & 
deployment environments, this section 
evaluates these metrics in terms of fuzzy 
ranges of Low (L=1), Medium (M=2), High 
(H=3), and Very High (VH=4), which will assist 
readers to estimate sidechain creation 
performance on a uniform scale. Based on this 
evaluation criterion, table 1 summarizes 
performance of different models w.r.t. various 
evaluation metrics. 

Model CC CD D Q S 

SSSAR [2] H M M H L 

PCBS [3] VH H M M H 
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FIM [4] M M L M H 

SCHMGKA [5] M H M H L 

SSA [6] M L M H L 

FL DAG [7] VH VH M H M 

SAB [8] L M M H L 

RBCP [9] M L M M H 

PMBs [10] H H H M L 

TPM [11] M M L M M 

MMRFP [12] H H M H L 

TBSD [13] M H L H M 

PoSC [14] H H M L L 

QM GTM [15] H VH M M H 

DAG [16] M H H M M 

BFL [17] VH VH L M M 

MaOEA-DRP [18] H VH M H H 

RHIB [19] H H M H M 

VSF [20] L L M L M 

TPCBGM [21] H H M M L 

SDN LSROM EH [23] H M M H H 

RAMSSOSS [24] H H L H M 

DQLNSB [25] VH H L M H 

VR HGTM [27] H M M H M 

PBGT [28] L M L H H 

CTP [29] M H M H L 

ELM [30] VH H M M L 

ZyConChain [31] M H M M L 

HCM SZS [32] H VH M M H 

DSG [33] L L M L M 

RBS [34] H H L M H 

VSS [35] H H H M H 

GOR [36] M H L M L 

OCCM [37] M VH L M H 

LB [38] H H M L L 

GCAR [39] H H H M L 

TVMOPSO [40] H H M L M 

PS DAG PoP [41] H M M H M 

LRSM [42] H VH L M L 

DML [43] VH H L H M 
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PIRATE [44] VH H M H M 

MLSM [45] H H H M L 

Table 1. Evaluation of different sidechaining 
models in terms of various performance 
metrics 

 

Figure 5. Computational Complexity of 
different sidechaining models 

Based on this evaluation and figure 5, it can be 
observed that SAB [8], VSF [20], PBGT [28], and 

DSG [33] showcase lowest computational 
complexity, and thus can be used for 
deployment of low-complexity sidechains in 
Internet of Things (IoT) and other low power 
applications.  

 

Figure 5. Deployment Cost of different 
sidechaining models 

Similarly, based on table 1 and figure 6, it can 
be observed that SSA [6], RBCP [9], VSF [20], 

0 1 2 3 4 5

PBGT [28]
VSF [20]

DSG [33]
FIM [4]

RBCP [9]
SSA [6]
SAB [8]

TPM [11]
TBSD [13]

OCCM [37]
GOR [36]

RAMSSOSS [24]
RBS [34]

DQLNSB [25]

DML [43]
LRSM [42]

BFL [17]
SDN LSROM EH [23]

VR HGTM [27]

PS DAG PoP [41]
SSSAR [2]

SCHMGKA [5]
CTP [29]

ZyConChain [31]
RHIB [19]

MaOEA-DRP [18]

MMRFP [12]
DAG [16]

PCBS [3]
QM GTM [15]
HCM SZS [32]

PIRATE [44]
TPCBGM [21]

TVMOPSO [40]
FL DAG [7]

VSS [35]
PoSC [14]

LB [38]

ELM [30]
PMBs [10]

GCAR [39]
MLSM [45]

0 1 2 3 4 5

PBGT [28]

VSF [20]

DSG [33]

FIM [4]

RBCP [9]

SSA [6]

SAB [8]

TPM [11]

TBSD [13]

OCCM [37]

GOR [36]

RAMSSOSS [24]

RBS [34]

DQLNSB [25]

DML [43]

LRSM [42]

BFL [17]

SDN LSROM EH [23]

VR HGTM [27]

PS DAG PoP [41]

SSSAR [2]

SCHMGKA [5]

CTP [29]

ZyConChain [31]

RHIB [19]

MaOEA-DRP [18]

MMRFP [12]

DAG [16]

PCBS [3]

QM GTM [15]

HCM SZS [32]

PIRATE [44]

TPCBGM [21]

TVMOPSO [40]

FL DAG [7]

VSS [35]

PoSC [14]

LB [38]

ELM [30]

PMBs [10]

GCAR [39]

MLSM [45]



NeuroQuantology | DEC 2022 | Volume 20 | Issue 19 | Page 2614-2630 | doi: 10.48047/nq.2022.20.19.NQ99223 
Dharmendra Kumar Roy / Empirical Analysis of Sidechaining Models for QoS Aware Blockchain Deployments from a 
Pragmatic Perspective 

 
 

 
                                                                               2623 
 

DSG [33], SSSAR [2], FIM [4], SAB [8], TPM [11], 
and SDN LSROM EH [23] have lowest 
deployment cost, and thus can be used for low-
cost applications including Wireless Sensor 
Networks (WSNs), Aerial Networks (ANs), etc. 

  

Figure 7. Delay for mining blocks of different 
sidechaining models 

Similarly, based on table 1 and figure 7, it can 
be observed that FIM [4], TPM [11], TBSD [13], 
BFL [17], RAMSSOSS [24], DQLNSB [25], PBGT 
[28], RBS [34], GOR [36], OCCM [37]. LRSM 
[42], and DML [43] have lowest mining delay, 
and thus can be used for high-speed 
applications including Military Deployments, 
WSNs, and other context-sensitive 
deployments. 

 

Figure 8. QoS performance of different 
sidechaining models 
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Upon referring table 1 and figure 8, it was also 
observed that SSSAR [2], SCHMGKA [5], SSA [6], 
FL DAG [7], SAB [8], MMRFP [12], TBSD [13], 
MaOEA-DRP [18], RHIB [19], SDN LSROM EH 
[23], RAMSSOSS [24], VR HGTM [27], PBGT 
[28], CTP [29], PS DAG PoP [41], DML [43], and 
PIRATE [44] had higher QoS performance, and 
thus can be used for applications that require 
lower energy consumption with better 
throughput performance levels. 

 

Figure 9. Scalability performance of different 
sidechaining models 

Similarly, from table 1 and figure 9 it was 
observed that PCBS [3], FIM [4], RBCP [9], QM 
GTM [15], MaOEA-DRP [18], SDN LSROM EH 
[23], DQLNSB [25], PBGT [28], HCM SZS [32], 
RBS [34], VSS [35], and OCCM [37] had better 
scalability, and thus can be used for multiple 
real-time applications.  

To further simplify this process of model 
selection, a novel Model Rank Score (MRS) is 
evaluated via equation 2, which combines 
multiple evaluation metrics to identify 
sidechaining models with better overall 
performance. 

    
 

  
 
 

  
 
 

 
 
 

 
 
 

 
 ( ) 

This score was evaluated for each model, and 
can be observed from table 2 as follows, 

Model ARS 

SSSAR [2] 6.33 

PCBS [3] 5.58 

FIM [4] 9.25 

SCHMGKA [5] 6.33 

SSA [6] 9.00 

FL DAG [7] 5.25 

SAB [8] 9.00 

RBCP [9] 9.25 

PMBs [10] 4.75 

TPM [11] 9.00 

MMRFP [12] 5.67 
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TBSD [13] 8.58 

PoSC [14] 5.17 

QM GTM [15] 5.58 

DAG [16] 5.67 

BFL [17] 7.00 

MaOEA-DRP [18] 5.83 

RHIB [19] 5.92 

VSF [20] 10.75 

TPCBGM [21] 5.42 

SDN LSROM EH [23] 6.83 

RAMSSOSS [24] 7.92 

DQLNSB [25] 7.58 

VR HGTM [27] 6.58 

PBGT [28] 11.50 

CTP [29] 6.33 

ELM [30] 5.08 

ZyConChain [31] 6.08 

HCM SZS [32] 5.58 

DSG [33] 10.75 

RBS [34] 7.92 

VSS [35] 5.25 

GOR [36] 8.08 

OCCM [37] 8.25 

LB [38] 5.17 

GCAR [39] 4.75 

TVMOPSO [40] 5.42 

PS DAG PoP [41] 6.58 

LRSM [42] 7.08 

DML [43] 7.58 

PIRATE [44] 5.58 

MLSM [45] 4.75 

Table 2. MRS for different sidechaining models 
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Figure 10. MRS performance of different 
sidechaining models 

Based on this evaluation, and figure 10, it can 
be observed that PBGT [28], VSF [20], DSG [33], 
FIM [4], RBCP [9], SSA [6], SAB [8], TPM [11], 
TBSD [13], OCCM [37], and GOR [36] showcase 
better overall performance. These models must 
be used for low delay, low cost, low 
complexity, high QoS and high scalability 
sidechain application deployments.  

 

4. Conclusion and future scope 

This review estimates performance of different 
sidechaining models and compares them w.r.t. 
various statistical metrics. Based on initial 
estimation it was observed that ML based 
Models outperform other models in terms of 
scalability & QoS performance, but addition of 
privacy, application-based reconfigurability, 
and enhanced security are also needed for real-
time deployments. This text compared the 
models in terms of computational complexity, 
mining delay, cost of deployment, scalability, & 
QoS performance, wherein, it was observed 
that SAB, VSF, PBGT, and DSG showcased 
lowest computational complexity, SSA, RBCP, 
VSF, DSG, SSSAR, FIM, SAB, TPM, and SDN 
LSROM EH have lowest deployment cost, FIM, 
TPM, TBSD, BFL, RAMSSOSS, DQLNSB, PBGT, 
RBS, GOR, OCCM, LRSM, and DML have lowest 
mining delay, SSSAR, SCHMGKA, SSA, FL DAG, 
SAB, MMRFP, TBSD, MaOEA-DRP, RHIB, SDN 
LSROM EH, RAMSSOSS, VR HGTM, PBGT, CTP, 
PS DAG PoP, DML, and PIRATE had higher QoS 
performance, while PCBS, FIM, RBCP, QM GTM, 
MaOEA-DRP, SDN LSROM EH, DQLNSB, PBGT, 
HCM SZS, RBS, VSS, and OCCM had better 
scalability, and thus can be used for multiple 
real-time applications. These metrics were 
combined to form a Novel Model Rank Score, 
which indicated that PBGT, VSF, DSG, FIM, 
RBCP, SSA, SAB, TPM, TBSD, OCCM, and GOR 
showcase better overall performance. These 
models must be used for low delay, low cost, 
low complexity, high QoS and high scalability 
sidechain application deployments. In future, 
researchers must validate performance of 
these models on multiple datasets, and fuse 
these models to develop hybrid ML based 
sidechaining techniques, which can be used for 
a wide variety of network deployments. 
Moreover, researchers can introduce low-
power Convolutional Neural Network (CNN) 
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models in order to augment sidechaining 
performance via convolutional feature sets. 

5. References 

[1] Angtai Li, Guohua Tian, Meixia Miao & 
Jianpeng Gong (2022) Blockchain-based 
cross-user data shared auditing, Connection 
Science, 34:1, 83-
103, DOI: 10.1080/09540091.2021.1956879 

[2] A. Mizrahi and O. Rottenstreich, "State 
Sharding with Space-aware 
Representations," 2020 IEEE International 
Conference on Blockchain and 
Cryptocurrency (ICBC), 2020, pp. 1-9, doi: 
10.1109/ICBC48266.2020.9169402. 

[3] Songze Li, Mingchao Yu, Chien-Sheng Yang, 
Amir Salman Avestimehr, Sreeram Kannan, 
and Pramod Viswanath. 2021. PolyShard: 
Coded Sharding Achieves Linearly Scaling 
Efficiency and Security Simultaneously. 
<i>Trans. Info. For. Sec.</i> 16 (2021), 249–
261. 
DOI:https://doi.org/10.1109/TIFS.2020.300
9610 

[4] Yan Wang, Jixin Li, Wansheng Liu, Aiping 
Tan, "Efficient Concurrent Execution of 
Smart Contracts in Blockchain 
Sharding", Security and Communication 
Networks, vol. 2021, Article 
ID 6688168, 15 pages, 2021. https://doi.org
/10.1155/2021/6688168 

[5] Naresh, VS, Allavarpu, VVLD, Reddi, 
S, Murty, PSR, Raju, NVSL, Mohan, RNVJ. A 
provably secure sharding based blockchain 
smart contract centric hierarchical group 
key agreement for large wireless ad-hoc 
networks. Concurrency Computat Pract 
Exper. 2022; 34( 3):e6553. https://doi.org/1
0.1002/cpe.6553 

[6] Gencer, Adem Efe & Van Renesse, Robbert 
& Sirer, Emin. (2017). Short Paper: Service-
Oriented Sharding for Blockchains. 393-401. 
10.1007/978-3-319-70972-7_22. 

[7] Yuan, Shuo & Cao, Bin & Sun, Yao & Peng, 
Mugen. (2021). Secure and Efficient 
Federated Learning Through Layering and 
Sharding Blockchain. 

[8] S. S. D. Selvi, A. Paul, C. P. Rangan, S. 
Dirisala and S. Basu, "Splitting and 
Aggregating Signatures in Cryptocurrency 
Protocols," 2019 IEEE International 
Conference on Decentralized Applications 
and Infrastructures (DAPPCON), 2019, pp. 
100-108, doi: 
10.1109/DAPPCON.2019.00021. 

[9] K. Saadat, N. Wang, X. Wei, B. Da and R. 
Tafazolli, "Reconfigurable Blockchains for 
Dynamic Cluster-based Applications," 2020 
IEEE Intl Conf on Parallel & Distributed 
Processing with Applications, Big Data & 
Cloud Computing, Sustainable Computing & 
Communications, Social Computing & 
Networking 
(ISPA/BDCloud/SocialCom/SustainCom), 
2020, pp. 925-931, doi: 10.1109/ISPA-
BDCloud-SocialCom-
SustainCom51426.2020.00142. 

[10] Gao, Yuefei & Kawai, Shin & Nobuhara, 
Hajime. (2019). Scalable Blockchain 
Protocol Based on Proof of Stake and 
Sharding. Journal of Advanced 
Computational Intelligence and Intelligent 
Informatics. 23. 856-863. 
10.20965/jaciii.2019.p0856. 

[11] M. Li, H. Tang, A. R. Hussein and X. 
Wang, "A Sidechain-Based Decentralized 
Authentication Scheme via Optimized Two-
Way Peg Protocol for Smart Community," in 
IEEE Open Journal of the Communications 
Society, vol. 1, pp. 282-292, 2020, doi: 
10.1109/OJCOMS.2020.2972742. 

[12] Xu, Yibin & Huang, Yangyu. (2020). An 
n/2 byzantine node tolerate blockchain 
sharding approach. 349-352. 
10.1145/3341105.3374069. 

https://doi.org/10.1080/09540091.2021.1956879
https://doi.org/10.1155/2021/6688168
https://doi.org/10.1155/2021/6688168
https://doi.org/10.1002/cpe.6553
https://doi.org/10.1002/cpe.6553


NeuroQuantology | DEC 2022 | Volume 20 | Issue 19 | Page 2614-2630 | doi: 10.48047/nq.2022.20.19.NQ99223 
Dharmendra Kumar Roy / Empirical Analysis of Sidechaining Models for QoS Aware Blockchain Deployments from a 
Pragmatic Perspective 

 
 

 
                                                                               2628 
 

[13] J. Yun, Y. Goh and J. -M. Chung, "Trust-
Based Shard Distribution Scheme for Fault-
Tolerant Shard Blockchain Networks," in 
IEEE Access, vol. 7, pp. 135164-135175, 
2019, doi: 10.1109/ACCESS.2019.2942003. 

[14] Abuidris, Y., Kumar, R., Yang, T. and 
Onginjo, J. (2021), Secure large-scale E-
voting system based on blockchain contract 
using a hybrid consensus model combined 
with sharding. ETRI Journal, 43: 357-
370. https://doi.org/10.4218/etrij.2019-
0362 

[15] Canhui Chen, Qian Ma, Xu Chen, and 
Jianwei Huang. 2021. User Distributions in 
Shard-based Blockchain Network: Queueing 
Modeling, Game Analysis, and Protocol 
Design. In <i>Proceedings of the Twenty-
second International Symposium on 
Theory, Algorithmic Foundations, and 
Protocol Design for Mobile Networks and 
Mobile Computing</i> (<i>MobiHoc 
'21</i>). Association for Computing 
Machinery, New York, NY, USA, 221–230. 
DOI:https://doi.org/10.1145/3466772.3467
051 

[16] Chaoxia Qin, Bing Guo, Yan Shen, Tao Li, 
Yun Zhang, Zhen Zhang, "A Secure and 
Effective Construction Scheme for 
Blockchain Networks", Security and 
Communication Networks, vol. 2020, Article 
ID 8881881, 20 pages, 2020. https://doi.org
/10.1155/2020/8881881 

[17] ScaleSFL: A Sharding Solution for 
Blockchain-Based Federated Learning, 
https://arxiv.org/abs/2204.01202 

[18] X. Cai et al., "A Sharding Scheme-Based 
Many-Objective Optimization Algorithm for 
Enhancing Security in Blockchain-Enabled 
Industrial Internet of Things," in IEEE 
Transactions on Industrial Informatics, vol. 
17, no. 11, pp. 7650-7658, Nov. 2021, doi: 
10.1109/TII.2021.3051607. 

[19] Han, R., Yu, J., & Zhang, R. (2020). 
Analysing and Improving Shard Allocation 
Protocols for Sharded Blockchains. IACR 
Cryptol. ePrint Arch., 2020, 943. 

[20] S. Kim, "Two-Phase Cooperative 
Bargaining Game Approach for Shard-Based 
Blockchain Consensus Scheme," in IEEE 
Access, vol. 7, pp. 127772-127780, 2019, 
doi: 10.1109/ACCESS.2019.2939778. 

[21] S. Kim, "Two-Phase Cooperative 
Bargaining Game Approach for Shard-Based 
Blockchain Consensus Scheme," in IEEE 
Access, vol. 7, pp. 127772-127780, 2019, 
doi: 10.1109/ACCESS.2019.2939778. 

[22] C. Huang et al., "RepChain: A 
Reputation-Based Secure, Fast, and High 
Incentive Blockchain System via Sharding," 
in IEEE Internet of Things Journal, vol. 8, no. 
6, pp. 4291-4304, 15 March15, 2021, doi: 
10.1109/JIOT.2020.3028449. 

[23] J. Ren, J. Li, H. Liu and T. Qin, "Task 
offloading strategy with emergency 
handling and blockchain security in SDN-
empowered and fog-assisted healthcare 
IoT," in Tsinghua Science and Technology, 
vol. 27, no. 4, pp. 760-776, Aug. 2022, doi: 
10.26599/TST.2021.9010046. 

[24] A. Asheralieva and D. Niyato, 
"Reputation-Based Coalition Formation for 
Secure Self-Organized and Scalable 
Sharding in IoT Blockchains With Mobile-
Edge Computing," in IEEE Internet of Things 
Journal, vol. 7, no. 12, pp. 11830-11850, 
Dec. 2020, doi: 
10.1109/JIOT.2020.3002969. 

[25] J. Yun, Y. Goh and J. -M. Chung, "DQN-
Based Optimization Framework for Secure 
Sharded Blockchain Systems," in IEEE 
Internet of Things Journal, vol. 8, no. 2, pp. 
708-722, 15 Jan.15, 2021, doi: 
10.1109/JIOT.2020.3006896. 

[26] A. Hafid, A. S. Hafid and M. Samih, "A 
Novel Methodology-Based Joint 

https://doi.org/10.4218/etrij.2019-0362
https://doi.org/10.4218/etrij.2019-0362
https://doi.org/10.1155/2020/8881881
https://doi.org/10.1155/2020/8881881
https://arxiv.org/abs/2204.01202


NeuroQuantology | DEC 2022 | Volume 20 | Issue 19 | Page 2614-2630 | doi: 10.48047/nq.2022.20.19.NQ99223 
Dharmendra Kumar Roy / Empirical Analysis of Sidechaining Models for QoS Aware Blockchain Deployments from a 
Pragmatic Perspective 

 
 

 
                                                                               2629 
 

Hypergeometric Distribution to Analyze the 
Security of Sharded Blockchains," in IEEE 
Access, vol. 8, pp. 179389-179399, 2020, 
doi: 10.1109/ACCESS.2020.3027952. 

[27] J. Li, D. Niyato, C. S. Hong, K. -J. Park, L. 
Wang and Z. Han, "Cyber Insurance Design 
for Validator Rotation in Sharded 
Blockchain Networks: A Hierarchical Game-
Based Approach," in IEEE Transactions on 
Network and Service Management, vol. 18, 
no. 3, pp. 3092-3106, Sept. 2021, doi: 
10.1109/TNSM.2021.3078142. 

[28] M. H. Manshaei, M. Jadliwala, A. Maiti 
and M. Fooladgar, "A Game-Theoretic 
Analysis of Shard-Based Permissionless 
Blockchains," in IEEE Access, vol. 6, pp. 
78100-78112, 2018, doi: 
10.1109/ACCESS.2018.2884764. 

[29] J. Li, T. Liu, D. Niyato, P. Wang, J. Li and 
Z. Han, "Contract-Theoretic Pricing for 
Security Deposits in Sharded Blockchain 
With Internet of Things (IoT)," in IEEE 
Internet of Things Journal, vol. 8, no. 12, pp. 
10052-10070, 15 June15, 2021, doi: 
10.1109/JIOT.2021.3049227. 

[30] D. Jia, J. Xin, Z. Wang and G. Wang, 
"Optimized Data Storage Method for 
Sharding-Based Blockchain," in IEEE Access, 
vol. 9, pp. 67890-67900, 2021, doi: 
10.1109/ACCESS.2021.3077650. 

[31] N. Sohrabi and Z. Tari, "ZyConChain: A 
Scalable Blockchain for General 
Applications," in IEEE Access, vol. 8, pp. 
158893-158910, 2020, doi: 
10.1109/ACCESS.2020.3020319. 

[32] J. -Y. Kwak, J. Yim, N. -S. Ko and S. -M. 
Kim, "The Design of Hierarchical Consensus 
Mechanism Based on Service-Zone 
Sharding," in IEEE Transactions on 
Engineering Management, vol. 67, no. 4, 
pp. 1387-1403, Nov. 2020, doi: 
10.1109/TEM.2020.2993413. 

[33] Hung Dang, Tien Tuan Anh Dinh, 
Dumitrel Loghin, Ee-Chien Chang, Qian Lin, 
and Beng Chin Ooi. 2019. Towards Scaling 
Blockchain Systems via Sharding. In 
<i>Proceedings of the 2019 International 
Conference on Management of Data</i> 
(<i>SIGMOD '19</i>). Association for 
Computing Machinery, New York, NY, USA, 
123–140. 
DOI:https://doi.org/10.1145/3299869.3319
889 

[34] Liu, Yizhong & Liu, Jianwei & Vaz Salles, 
Marcos Antonio & Zhang, Zongyang & Li, 
Tong & Hu, Bin & Henglein, Fritz & Lu, 
Rongxing. (2021). Building Blocks of 
Sharding Blockchain Systems: Concepts, 
Approaches, and Open Problems. 

[35] Gang Wang, Zhijie Jerry Shi, Mark 
Nixon, and Song Han. 2019. SoK: Sharding 
on Blockchain. In <i>Proceedings of the 1st 
ACM Conference on Advances in Financial 
Technologies</i> (<i>AFT '19</i>). 
Association for Computing Machinery, New 
York, NY, USA, 41–61. 
DOI:https://doi.org/10.1145/3318041.3355
457 

[36] R. M. Parizi, S. Homayoun, A. 
Yazdinejad, A. Dehghantanha and K. -K. R. 
Choo, "Integrating Privacy Enhancing 
Techniques into Blockchains Using 
Sidechains," 2019 IEEE Canadian 
Conference of Electrical and Computer 
Engineering (CCECE), 2019, pp. 1-4, doi: 
10.1109/CCECE.2019.8861821. 

[37] M. Westerkamp and J. Eberhardt, 
"zkRelay: Facilitating Sidechains using 
zkSNARK-based Chain-Relays," 2020 IEEE 
European Symposium on Security and 
Privacy Workshops (EuroS&PW), 2020, pp. 
378-386, doi: 
10.1109/EuroSPW51379.2020.00058. 

[38] Okanami, Naoya & Nakamura, Ryuya & 
Nishide, Takashi. (2020). Load Balancing for 



NeuroQuantology | DEC 2022 | Volume 20 | Issue 19 | Page 2614-2630 | doi: 10.48047/nq.2022.20.19.NQ99223 
Dharmendra Kumar Roy / Empirical Analysis of Sidechaining Models for QoS Aware Blockchain Deployments from a 
Pragmatic Perspective 

 
 

 
                                                                               2630 
 

Sharded Blockchains. 10.1007/978-3-030-
54455-3_36. 

[39] Woo, S., Song, J., Kim, S. et al. GARET: 
improving throughput using gas 
consumption-aware relocation in Ethereum 
sharding environments. Cluster 
Comput 23, 2235–2247 (2020). 
https://doi.org/10.1007/s10586-020-
03087-1 

[40] Nartey, Clement & Tchao, E. T. & Gadze, 
Dzisi & Akowuah, Bright & Nunoo-Mensah, 
Henry & Welte, Dominik & Sikora, Axel. 

(2022). Blockchain‑IoT peer device storage 

optimization using an advanced time‑

variant multi‑objective particle swarm 

optimization algorithm. EURASIP Journal on 
Wireless Communications and Networking. 
5. 10.1186/s13638-021-02074-3. 

[41] Coutinho, K., Clark, P., Azis, F., Lip, N., & 
Hunt, J. (2021). Enabling Blockchain 
Scalability and Interoperability with Mobile 
Computing through LayerOne.X. ArXiv, 
abs/2110.01398. 

[42] Yadav, Amrendra & Singh, Nikita & 
Dharmender, • & Kushwaha, Singh. (2022). 
Sidechain: storage land registry data using 
blockchain improve performance of search 
records. Cluster Computing. 
10.1007/s10586-022-03535-0(. 

[43] M. A. Cheema, H. Khaliq Qureshi, C. 
Chrysostomou and M. Lestas, "Utilizing 
Blockchain for Distributed Machine 
Learning based Intrusion Detection in 
Internet of Things," 2020 16th International 
Conference on Distributed Computing in 
Sensor Systems (DCOSS), 2020, pp. 429-
435, doi: 
10.1109/DCOSS49796.2020.00074. 

[44] S. Zhou, H. Huang, W. Chen, P. Zhou, Z. 
Zheng and S. Guo, "PIRATE: A Blockchain-
Based Secure Framework of Distributed 
Machine Learning in 5G Networks," in IEEE 
Network, vol. 34, no. 6, pp. 84-91, 

November/December 2020, doi: 
10.1109/MNET.001.1900658. 

[45] Y. Liu, F. R. Yu, X. Li, H. Ji and V. C. M. 
Leung, "Blockchain and Machine Learning 
for Communications and Networking 
Systems," in IEEE Communications Surveys 
& Tutorials, vol. 22, no. 2, pp. 1392-1431, 
Secondquarter 2020, doi: 
10.1109/COMST.2020.2975911. 

 

https://doi.org/10.1007/s10586-020-03087-1
https://doi.org/10.1007/s10586-020-03087-1

