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Abstract:  

Eigenvalues play quite an important role in differential equations and the real life. Several 

phenomena depend upon the eigenvalues (frequency) such as wobbling and collapsing of the 

bridges, analyzation of the stable and unstable, study of rotatory bodies, vibrating bodies, and 

their small oscillations, and many more. In this paper we will be observing different methods 

and their rate of convergence, algorithms, and efficiency. The focus will be on the QR 

method being the most efficient method in its converging power, efficiency, computational 

cost, and algorithms. For this we will be looking at some of the basics of the eigenvalues and 

the matrices as well.  
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I. INTRODUCTION 

The focus of this expository paper is to 

compare the different methods of solving 

the eigenvalue problems and to consider 

the most efficient method of all the 

methods. In this, one can see the different 

methods initializing from the power 

method and ending to the QR method, 

their convergence, computational time, 

computational cost or complexity, 

algorithm, and efficiency. These methods 

lead to the eigenvalue solutions which are 

quite important in the real life as well as it 

helps in various applications such as 

analyzation of stability, study of rotatory 

bodies, analyzing different population 

growth models, vibrating systems and their  

 

 

small oscillations and many more 

mechanical systems [1]. These eigenvalues  

correspond to the energy levels of a 

molecule which results in vibrations and 

because every mechanical system depends 

on vibrations so such eigenvalues 

(frequencies) impact in both the manner 

positively and negatively as it can lead to 

catastrophic consequences like collapsing 

of bridges, wobbling of bridges as well [2]. 

As there are several methods of finding the 

solution of eigenvalues, these have been 

divided into two categories; one is a direct 

method and the other one is an iterative 

method [3]. Direct methods are generally 

for computing all the eigenvalues for a 

particular matrix, either be its sparse, 

dense, symmetric, asymmetric or of any 

mailto:panwarshalu22@gmail.com


NEUROQUANTOLOGY | OCTOBER 2022 | VOLUME 20 | ISSUE 12 | PAGE 2627-2634| DOI: 10.14704/NQ.2022.20.12.NQ77255                      
Shalu Panwar / A Critical Analyzation of the Comparison of Solutions of Matrix Eigenvalue Problems 

 

                                                                                                                                                                               

www.neuroquantology.com 

eISSN 1303-5150  

2628 

form. These methods specifically require 

O (  ) computational time to find the 

eigenvalues for a considerable n * n matrix 

[3]. Iterative methods mainly focus on the 

computation of a particular set of 

eigenvalues and the associated 

eigenvectors to them [3]. The convergence 

of the iterative methods is generally based 

on the properties of a given matrix. These 

methods generally help to find various 

arbitrary eigenvalues and their associated 

eigenvectors in only a set of some 

iterations even that to a very little error. In 

1961, the QR algorithm was brought to 

light independently by John G. F. Francis 

and Vera Kublanovskaya [4], it was 

somehow the continuation of the LR 

algorithm. In the first attempts of the QR 

algorithm by Francis, one can find the 

general proof of the lower triangular 

matrices along with proving the matrix as 

singular and considering its different 

eigenvalues. Also, the connection between 

the QR algorithm and LR algorithm can be 

easily reviewed for the positive-definite 

symmetric matrices. Later on, he did a 

number of changes such as origin shifts 

and deflations in the iterated matrices. One 

of the approaches for applying QR to get 

the better results was to reduce the given 

general matrix into a Hessenberg matrix 

and then to the tridiagonal matrix by using 

the Gauss elimination criteria [4]. In 1995, 

D S Watkins considered the QR algorithm 

and confirmed its forward stability and the 

transmission of shifts as the tiny entries in 

the sub diagonals do not cause any 

hindrance in the stability of the matrix or 

reaching to the concerned output. Even, he 

did talk about the multishift or the shifting 

strategies in the QR algorithm [5]. In 2005, 

Raf Vandebril et.al give a new approach 

on QR algorithm that is by reducing the 

given matrix into a semi separable matrix 

and not into a tridiagonal matrix which 

will lead to the reduction in the 

computational cost of QR from O (  ) to 

O (n) flops making it simpler to use as the 

larger order terms will be less per iteration 

[6]. After that a number of authors such as 

Parlett, Braman, Colbrook, Henry and 

many others had given their astonishing 

works on QR algorithm. The most recent 

work has been given by Nikhil Srivastava 

with his coauthors on the global 

convergence of the Hessenberg Shifted QR 

for the nonsymmetric matrices [7]. We 

will begin with one of the easiest iterative 

methods, i.e., the power method and talk 

about its generalization, its procedure, 

convergence and algorithm, and then for 

the further methods. For this to understand 

we must know the basics that are as under: 

 

II. PRELIMINARIES 

 

A. Eigenvalues:  

Eigenvalues are defined as the scalars 

(constants) or their sets related to the given 

system of linear equations (i.e., a matrix 

equation). ‘Eigen’ - a German word 

meaning ‘proper’ or ‘characteristic’ so 

these are termed as characteristic roots, 

characteristic values, proper values, or 

latent roots as well [8]. The basic use of 

eigenvalues is to convert the eigenvector. 

The basic equation for this: 

Mx = λ x 

where λ is an eigenvalue of the matrix M 

to the corresponding eigenvector x. 

 

B. Eigenvectors:  

Eigenvectors are the vectors (not zero) that 

do not get converted when some 

transformations (linear) are performed on 

them. The change can be done only by a 

scalar factor [9]. In simple words, if M is 

known to be a linear transformation from a 

vector space V and x is the vector in V, 

which is a vector not equal to zero, then V 

will be considered as an eigenvector of M 

if M (x) is the scalar multiple of x. 
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An Eigenspace of a particular vector x is 

the set of all the eigenvectors with their 

corresponding eigenvalues including the 

zero vector, but the zero vector is not 

considered as an eigenvector. 

 

C. Orthogonal Matrix: 

An orthogonal matrix, also known as an 

orthonormal matrix, is defined as the real 

square matrix whose rows and columns are 

orthonormal vectors[10], i.e.,  

Transpose (Q)*Q = Q*Transpose (Q) = I 

where I is known as the Identity matrix. 

Or a matrix is supposed to be orthogonal if 

its transpose came to be equal to its 

inverse. 

 

D. Bidiagonal Matrix:  

A bidiagonal matrix can be defined as the 

matrix having non-zero elements in the 

main diagonal along with the non-zero 

entries either in the just above diagonal or 

in the just below diagonal [11].  

Example:   

A =  

    
    
    
    

  

OR 

B =   

    
    
    
    

  

 

E. Tridiagonal Matrix:  

A tridiagonal matrix is defined as the 

matrix having non-zero elements in the 

main diagonal as well as the non-zero 

entries in the above and the below the 

main digaonal [11].  

Example: 

A =  

 
 
 
 
 
     
     
     
     
      

 
 
 
 

 

 

F. Error: 

The error is estimated as the difference 

between the exact value and the 

approximated value [12]. There are several 

types of errors including the relative error, 

absolute error, percentage error, random 

error, and systematic error. 

The error can be resolved using different 

methods basically by using the iterative 

methods which are described below. After 

applying the required formula for the 

different methods, in each iteration, the 

error becomes small and hence helps in 

acquiring the required result, i.e., 

eigenvalue. 

 

III. TYPES OF METHODS 

There are several methods to reach to the 

solution. Some of these are: 

A. Power method: 

It is one of the easy methods to find the 

largest eigenvalue and the associated 

vector. For a given diagonalizable matrix 

B, this method produces a number λ which 

is known to be the greatest eigenvalue of 

matrix A, and a vector x which is not equal 

to zero, is a corresponding eigenvector of λ 

i.e.  

Bx = λ x 

This method is also termed as Von Mises 

iteration [13]. 

It is a simple method, but the convergence 

rate of this method is very slow; also 

multiplying of matrix B with vector v 
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again and again takes much time, so it is 

mainly effective in large sparse matrices.  

The rate of convergence can be found for 

this method as λ2/ λ1.  In this we start with 

a vector x, an approximation, and 

continues with multiplication of matrix B 

by this vector x and putting this equal to λ 

times vector x.  

 

Algorithm [11]: 

Given    , we iterate,  

n = 0, 

repeat 

     = B    , 

 Approximate) 2׀׀    ׀׀ /       =     

eigenvector) 

            
        (Approximate 

eigenvalue) 

       

until the required convergence is acquired. 

  

B. Inverse Power Method: 

This method is quite the same as the power 

method except that it finds the smallest 

value instead of the greatest value. It is 

used when the corresponding eigenvalue is 

already known. This method is basically a 

more exact form of the power method to 

reach the smallest eigenvalue. This method 

converges linearly. It starts with an 

approximation µ for the eigenvalue 

corresponding to the designed eigenvector 

or a vector x, an approximation [13] i.e. 

inverse(A) *x = (1/ λ) x where 1/ λ = µ 

 

Algorithm [11]: 

Given    , we iterate,  

n = 0, 

repeat 

     =           , 

 Approximate) 2׀׀    ׀׀ /       =     

eigenvector) 

            
        (Approximate 

eigenvalue) 

       

until convergence. 

 

Note: Inverse power method is basically a 

more advanced approach to the power 

method. In this method, we just modify the 

formula to reach the smallest eigenvalue 

instead of the greatest one, using inverse of 

the given matrix instead of its actual value 

as well as the inverse of the eigenvalue is 

used in modified approach. 

 

C. Shifted power method: 

This method is basically used to find the 

eigenvalue close to a vector. It is a 

modified version of the power method to 

reach not only to the number or root of the 

problem but to the vector specified 

solution. It is much better than the power 

method and inverse power method as it 

converges quadratically, whereas these 

two converge linearly. The computational 

cost for this method is quite expensive as it 

uses O (  ) flops. Let s be a scalar 

magnitude so to find its closest eigenvalue  

(A- s * I) x = (λ - s) x 

 

D. Jacobi Method: 

Jacobi method is one of the oldest methods 

for finding the solution of eigenvalue 

problems, as it was initiated in 1846[9]. It 

is very slow as compared to the other 

methods in reaching to the solution. But 

this method is interesting only because of 
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its accuracy as many times it is helpful in 

finding the small eigenvalues and their 

associated eigenvectors much more 

efficiently and accurately than any other 

method [14]. This method is very helpful 

in obtaining the eigenvalues of the dense 

matrix. 

 

Algorithm [1]: Jacobi rotation to B in the 

coordinates j, k: 

Proc Jacobi Rotation (B, j, k) 

if |     | is comparatively not trivial  

Y = (           ) / (2.     ) 

x = sign (Ƭ) / (|Ƭ| +        ) 

c = 1 /          

s = c. x 

B =    (j, k, θ). B. R (j, k, θ) 

if the required eigenvectors are found  

J = J. R (j, k, θ) 

end if 

end if 

Main command is of the following form: 

repeat 

pick a pair (j, k)  

call the above-mentioned Jacobi rotation 

(B, j, k) 

until B is desirably diagonalized 

 

E. Rayleigh Quotient: 

It is an eigenvalue method by which one 

can extend the inverse iteration method by 

using Rayleigh Quotient to find the 

increasingly accurate eigenvalue solutions. 

This is one of the fastest methods of 

getting the solution as it converges very 

rapidly and a very few iterations are 

required to reach the limit. It converges 

cubically that implies in every iteration the 

number of correct digits will be tripled 

automatically and the error will become 

very small, as well as the eigenvalue will 

come to be very simple [9]. 

 

Algorithm [1]: 

Given   , with       = 1 and a stopping 

tolerance tol given by user, we iterate 

           = 
  
    

  
   

   

      

repeat 

            
        

             

             

       

until the convergence              
      

And when the stopping criteria is fulfilled 

for the given matrix then    will be within 

the tol of an eigenvalue of B.  

 

F. QR Algorithm: 

This method is solved by using the 

principle of matrix decomposition. This 

method mainly takes O (  ) computational 

cost [9]. It converges cubically. The QR 

decomposition is initiated by producing 

the matrix as the product of an orthogonal 

(orthonormal) matrix and an upper 

triangular matrix and then multiplying the 

factors in the reverse order and repeat 

these steps [8].    

i.e., B = Q*R, where Q is known as the 

orthogonal matrix and R as the upper 

triangular matrix.  
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If the diagonal elements of R are non-

negative, then the eigenvalue so obtained 

is unique. An orthogonal matrix, also 

known as an orthonormal matrix, is a real 

square matrix in which the rows and 

colums are orthonormal vectors[8], i.e.,  

Transpose (Q)*Q = Q*Transpose (Q) = I 

where I is the Identity matrix. 

Or a matrix is considered to be orthogonal 

if the transpose of the matrix is equal to 

the inverse of the matrix. 

 

Algorithm [11]: 

Given   , we iterate, 

n = 0 

repeat 

Factor         (the QR 

decomposition) 

           

       

until the convergence is acquired. 

 

Algorithm: QR iteration including a shift 

[11] 

Given   , we iterate 

n = 0 

repeat 

Pick a shift    close to the eigenvalue of B 

Factor                  (the QR 

decomposition) 

          +   I 

       

until the required convergence occurs. 

 

Example using commands: 

There has been several software to get the 

required eigenvalues of a matrix problem 

using the different commands. Here, one 

can see the commands for finding the 

solution of the problem using QR 

algorithm with the help of MATLAB 

software [15]. 

A=vander(1:4) 

for k=1:20, [Q,R]=qr(A); A=Q'*A*Q;  

end 

A 

eig(A) 

This is the procedure to find the 

eigenvalue for a 4*4 matrix. Similarly, just 

by applying a change in the value of A i.e., 

the matrix, one can find the solution or the 

eigenvalues of the different matrix 

problems. 

 

Method Computatio

nal 

Complexity 

(FLOPS) 

Rate of 

Convergen

ce 

Power 

Method 
O (  ) Linear 

Inverse 

Power 

Method 

O (  ) Linear 

Shifted 

Method 
O (  ) Quadratic 

Jacobi 

Method 
O (  ) Quadratic 

Rayleigh 

Quotient 

Method 

O (  ) Cubic 

QR Method 

(Without 

shift) 

QR Method 

(With shift/ 

tridiagonal 

decompositi

on) 

O (  ) 

 

 

 

O (n) 

 

 

Cubic 
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Table 1: Comparison 

Here, FLOPS denotes the floating-point 

operations per second i.e., number of 

operations needed to be performed in one 

iteration by a particular method. Lesser the 

complexity per iteration, higher the 

accuracy and output.  

 

IV. CONCLUSION 

We have studied several methods starting 

from the power method to the QR method 

previously by which we can reach our 

eigenvalue solution. Out of all these 

methods, the most effective method for the 

purpose of solution is: QR algorithm 

method. The QR algorithm is the fastest 

method of all the iterative and the direct 

methods as it helps to obtain all the 

required solutions to a high relative 

accuracy. This implies that all the digits of 

the solutions are correct up to the three 

approximated places per iteration. Also, it 

is backwardly stable, as Watkins has 

proved in his works. In the QR method, 

the reduced bidiagonal matrix is much 

more accurate than the reduced tridiagonal 

matrix. The latter approaches by Vandebril 

in the semiseparable matrices makes it 

more efficient, reducing the higher order 

terms in each iteration, making it less time 

consuming.  The QR algorithm has been 

considered a jewel in the crown of matrix 

decomposition by Higham for solving the 

nonsymmetric eigen problems. And, 

Parlett considered it a complete original 

idea and not a refinement for finding 

solutions with satisfactory experience. One 

more thing which we have taken into 

consideration is its computational cost, as 

many of the methods have the same 

convergence rate but high computational 

cost. The computational complexity in the 

basic QR method is of approximately O 

(  ) flops whereas the one with the shifts 

or decompositions is only O (n) flops. For 

this, a number of modifications have been 

done after the basic QR, such as the 

transmission of shifts, deflation techniques 

which helps in reducing the computational 

cost. The upgraded QR method takes only 

10% flops of the general method for a 

general matrix leading to the decrement of 

computational cost. The QR method in 

comparison to other methods converges 

faster (cubically) and accurately along 

with its low computational cost. So, in 

comparison to the other methods, the QR 

algorithm came to be the most trustable, 

less time consuming and of less 

computational cost. One of the recent 

works by Nikhil Srivastava (2021) has 

given a completely new view to the QR 

algorithm in the nonsymmetric matrices 

opening new paths to further research. 

Another great work by Vandebril (2022) 

leads to the upgradation of the QR method 

to the QZ method helping in choosing the 

concerned eigenvalue and moving to the 

next conditions without any further delay 

in the process. Through the further studies 

on QR algorithm, the solutions of the 

eigenvalue problems will be easily 

achieved by using new approaches and 

methods which will help to decrease the 

consummation of time to get the better and 

accurate results and solutions.  
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