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Abstract—This paper is a review of prime numbers and 

their applications in cryptography, discussed in special 

reference to RSA (Rivest-Shamir-Adleman) cryptosystem. 

Firstly, we discuss prime numbers and important related 

theorems, viz. Unique Factorization Theorem and Chinese 

Remainder Theorem. Then we discuss modular arithmetic and 

introduce Euler's totient function and discuss Euler's theorem, 

which forms the backbone of RSA cryptosystem. Next, 

Cryptography and public key cryptography are introduced 

and the implementation of RSA cryptosystem is discussed. 

RSA is widely used because of the difficulty of finding 

the prime factorization of large composite numbers. 

Implementation of RSA cryptosystem in real-world 

applications is also discussed along with the conclusions. 

Keywords—Prime Numbers, Modular Arithmetic, Public-Key 

Cryptography, RSA Cryptosystem 

I. INTRODUCTION  

The rise of human intelligence gave way to many unique 

phenomena that were unobserved before, one of them being 

the art of hiding information. The need to hide information 

has been around for as long as complex civilizations have 

existed. The mechanism of conveying information from one 

entity to the other is of the utmost importance in times of 

conflict, with each party manoeuvring to outclass and 

surprise the other. In the ancient world, the Romans and the 

Greeks were the inventors of simple cryptographic 

techniques which involved the transposition of letters of the 

alphabet according to some simple rules, such as shifting the 

letters forward by three (Caesar Cipher) or transposing the 

letters in accordance with a more complex set of rules 

(Scytale). 

 

 Number theory is a branch of mathematics that 

studies integers. It has developed over thousands of years, 

with ancient Babylonians laying the ground-work for Greek 

mathematicians (Pythagoras, Euclid, Diophantus, et al.) to 

bring about the dawn of mathematics. Concurrently, in 

ancient India, many prominent mathematicians (Aryabhatta, 

Brahmagupta, Bhaskaracharya, et al.) worked independently 

in the areas of trigonometry, number theory and quadratic 

equations. Renaissance Europe saw a revival and ultimately 

the maturity of number theory with contributions by Fermat, 

Euler, Lagrange, Legendre, Gauss, et al into elementary 

number theory, analytic theory, algebraic number theory and 

Diophantine geometry. 

 

 Professor Alan Turing and his team [1] was 

instrumental in the Allied code-breaking efforts against the 

German Enigma machine and the widespread use of 

mathematics for code-breaking efforts. The post-war era 

saw an exponential rise in the scope and applications of 

mathematics and cryptography. For the better part of the 

twentieth century, symmetric key cryptography (i.e., using 

the same key for encryption and decryption) was the only 

known cryptographic technique in implementation until the 

introduction of asymmetric key cryptography (i.e., using 

separate keys for encryption and decryption) in 1976, with 

the idea being that it would be computationally infeasible to 

compute the private key, knowing the public key. It is this 

concept that is discussed in this review paper in detail. 

Shortly later, in 1978, Ron Rivest, Adi Shamir, and Leonard 

Adleman presented a practical implementation of public key 

cryptography, which is named RSA cryptosystem. 

 

 This paper is subdivided into two parts. The first 

one discusses the basics of number theory the all the pre-

requisite theorems that are necessary for a comprehensive 

understanding of the modern-day cryptography. The second 

part discusses public key cryptography and RSA (Rivest-

Shamir-Adleman) algorithm in its mathematical form. 

Proofs and examples are presented to assist the reader to 

grasp the concepts and get a feel for the real-life 

implementation of the system. 

 

II. NUMBER THEORY 

II a. Prime Numbers 

 

Prime numbers [2] are introduced quite early in the 

mathematics curriculum of schools. The basic notion of 

prime numbers lies in the realization that there exist 

some natural numbers (ℕ) that cannot be obtained by 

multiplying smaller natural numbers. The most obvious 

examples are 2. 3. 5. 7. .... 𝑒𝑡𝑐.. Thus, a prime number has 

only a single factor, i.e., 1 and itself. 

 

Definition: Formally, a natural number 𝑛 ϵ ℕ is prime if 𝑛 > 

1 and gcd(n, k) = 1, ∀ 𝑘 ϵ ℕ and k<n. 

 

Prime numbers are the building blocks of natural numbers. 

A number which is not prime is called a composite number. 

Thus, 4, 6, 8, 9, 10, ..., etc. are composite numbers. Each of 

these composite numbers can be written as a product of 
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prime numbers. For example, 4 = 2 × 2, 6 = 2×3, 8 = 2× 2× 

2, 9 = 3×3 and so on. Notice that each composite number is 

represented by a unique product of primes. 

 

     II b. Unique Factorization Theorem 

 

Any positive integer greater than 1 can be represented as a 

unique product of prime numbers. Formally, for some 𝑛 ϵ ℕ 

and 𝑛 > 1, 𝑛 = 𝑝𝑥 × 𝑞𝑦 × 𝑟𝑧 . . . where 𝑝. 𝑞. 𝑟. . . . are primes 

and the exponents 𝑥. 𝑦. 𝑧 . . . are integers. This says that a 

number, say 1000, for example, can be represented only as 

the product 2 × 2 × 2 × 5 × 5 × 5 and nothing else, i.e., no 

other prime number can appear in the prime factorization of 

1000. 

 

II c. Chinese Remainder Theorem 
 

Given a system of equations 

   x = a(mod(m))   (1) 

   x = b(mod(n))   (2) 

where gcd(m,n) = 1, if x1 and x2 are solutions to (1) and (2) 
respectively, then  

   x1 ≡ x2mod(m,n)  

is the unique solution [3]. This is easily extended to a system 
of multiple equations.  

 

                 II d. Modular Arithmetic 

 

Assume that there exists a set S, where S = 
{1,2,3,4,5,6,7,8,9,10,11,12}. Also, consider any two arbitrary 
numbers a,b ϵ S. The objective is to carry out the usual 
operations of addition and multiplication (a+b) and (a × b) 
such that the resultant, c, of the operation is also contained in 
the set, without any restrictions on a and b. This seems 
impossible at first,  

 

Consider this: 2 × 11 = 22 ∉ S, or 10+9=19, which is again 

not in S. To be able to carry out the objective, addition and 

multiplication operations need to be modified. 

 

Let 𝑆 be a set where 𝑆 = {1. 2. 3. 4. .... 𝑛}. Modular addition 

is defined as follows:  

 

                      
 

Setting 𝑛 = 12, we see that S gets reduced to {1, 2, ...,12}. 

For any two numbers, say a and 𝑏, the resultant of modular 

addition defined above lies always in 𝑆. For example, if 𝑎 = 

5 and 𝑏 = 6, 𝑎 + 𝑏 = 5 + 6 = 11 ϵ S, but if 𝑎 = 5 and 𝑏 = 9, 

then, according to the definition above, 𝑎 + 𝑏 = 5 + 9 = 14 > 

12, thus, a + b – 12 = 5 + 9 - 12 = 2 ϵ S. Thus, the resultant 

lies always in S.  
 

Let 𝑎 and 𝑏 be two numbers in 𝑆. Then, modular 

multiplication is defined as,  

              𝑎.𝑏 = 𝑎𝑏(𝑚𝑜𝑑(12)) ≡ r  

where 𝑟 is the remainder when (𝑎𝑏) is divided by 12. For 

example, take 

𝑎 = 2 and 𝑏 = 11. Then, 𝑎.𝑏 = 2.11 = 2.11(𝑚𝑜𝑑(12)) = 

22(𝑚𝑜𝑑(12)) = 10, which is in 𝑆. Similarly, it can be 

verified that for any choice of 𝑎 and 𝑏, that the resultant 

𝑎𝑏(𝑚𝑜𝑑(12)) always lies in 𝑆. 
 

Observe that 

   5.5(𝑚𝑜𝑑(12)) ≡ 25(𝑚𝑜𝑑(12)) ≡ 1 

Similarly, 

   11.6(𝑚𝑜𝑑(13)) ≡ 66(𝑚𝑜𝑑(13)) ≡ 1,  

and 

    8 .2(𝑚𝑜𝑑(15)) ≡ 16(𝑚𝑜𝑑(15)) ≡ 1. 

 

An integer 𝑝 is said to be the multiplicative inverse of 

another integer 𝑞 modulo 𝑛 if  

𝑝.𝑞(𝑚𝑜𝑑(𝑛)) ≡ 1.  

 

 

               II e. Congruences 

 

The idea of modular multiplication leads us to the concept 

of congruences. Geometrically, two shapes are said to be 

congruent to each other if they are identical, i.e. can be 

superimposed on one another, fitting perfectly. Similarly, 

two numbers 𝑎 and 𝑏 are said to be congruent modulo 𝑚 if 

the remainder of 𝑎 when divided by 𝑚 is equal to the 

remainder of 𝑏 when divided by 𝑚. If 𝑎(𝑚𝑜𝑑(𝑚)) ≡ 𝑏, then 

a is congruent to 𝑏(𝑚𝑜𝑑(𝑚)).  

 

Properties of Properties of Congruences [4]: 

- 𝑎 ≡ 𝑎(𝑚𝑜𝑑(𝑛)) ∀ 𝑎 ϵ ℤ +, i.e., congruence is reflexive. 

- If 𝑎 ≡ 𝑏(𝑚𝑜𝑑(𝑛)), then 𝑏 ≡ 𝑎(𝑚𝑜𝑑(𝑛)), i.e., congruence is 

symmetric. 

- If 𝑎 ≡ 𝑏(𝑚𝑜𝑑(𝑛)), and if 𝑎 ≡ 𝑏(𝑚𝑜𝑑(𝑛)), then a ≡ 

c(𝑚𝑜𝑑(𝑛)), i.e., congruence is transitive. 

- If 𝑎 ≡ 𝑏(𝑚𝑜𝑑(𝑛)), and c ≡ d(𝑚𝑜𝑑(𝑛)), then (a + b) ≡ (c + 

d)(𝑚𝑜𝑑(𝑛)), i.e., congruence is additive. 

- If 𝑎 ≡ 𝑏(𝑚𝑜𝑑(𝑛)), and c ≡ d(𝑚𝑜𝑑(𝑛)), then (a.b) ≡ 

(c.d)(𝑚𝑜𝑑(𝑛)), i.e., congruence is multiplicative. 

 

 

        II f. Fermat’s Little Theorem 

 

Let 𝑚 be a prime number and let 𝑛 be some other integer 

such that 𝑚 ∤ 𝑛 (𝑚 does not divide 𝑛, or 𝑚 is not a factor of 

𝑛), then  

                              

                            
   

         

        II g. Coprime Numbers 
 

The basic idea behind coprime numbers is similar to the one 
behind prime numbers (i.e. prime numbers have only two 
factors, viz. 1 and themselves). 
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Two positive integers a and b are relatively prime (or 

coprime) if their Greatest Common Divisor (alternatively 

called Highest Common Factor) is 1, i.e., gcd(a, b) = 1. The 

integers a and b need not be prime to be relatively prime. 

For example, if 𝑎 = 9 and 𝑏 = 25, then 𝑔𝑐𝑑(9,25) = 1, even 

though 9 and 25 are composite numbers. It is seen that 

larger the integer, greater the number of co-primes that it 

has. For example,  

 

- Consider the number 14. It is relatively prime with 1, 3, 5, 

9, 11, and 13. 

- Similarly, consider the number 30. It is relatively prime 

with 1, 7, 11, 13, 17, 19, 23, and 29. 
 

Thus, given any positive integer 𝑛, there are at max 𝑘 

integers relatively prime to 𝑛, where 𝑘 ≤ 𝑛. The integers k 

are called totatives of 𝑛 and 𝑔𝑐𝑑(𝑛, 𝑘) = 1. This introduces 

the idea of distribution of prime numbers. Given a positive 

integer 𝑛, the objective is to find the number of totatives of 

𝑛 (i.e. how many integers 𝑘 less than 𝑛 exist such that 

𝑔𝑐𝑑(𝑛, 𝑘) = 1). This is given by Euler's Totient Function, 𝜙. 

 

         II h. Euler’s Totient Function 

 

The totient 𝜙(𝑛) of a positive integer 𝑛 is defined as the 

number of positive integers less than 𝑛 such that they are 

relatively prime to 𝑛. Here, 𝜙(𝑛) is the number of positive 

integers less than n and relatively prime to n. For example, 

𝜙(14) = 6 (six integers, 1, 3, 5, 9, 11, and 13 are relatively 

prime to 14). Similarly, 𝜙(30) = 8. An important 

consequence of this is that for any prime number 𝑛, 

𝜙(𝑛) = 𝑛 - 1. For example, when 𝑛 = 13, 𝜙(13) = 12 (twelve 

integers, 1, 2, 3, 4, ..,12 are relatively prime to 13).  

 

 
 Fig: Plot [5] of Euler’s Totient Function for n ϵ [0,100]. 

 

   II i. Euler’s Totient Function 

 

For a given 𝑛 ∈ ℕ and ∀ 𝑎 ∈ ℕ such that 𝑔𝑐𝑑(𝑎, 𝑛) = 1, 

 

 
 

where 𝜙(𝑛) is Totient Function. Alternatively, it can be 

stated as follows, 

 

                
 

where the conditions for coprimality remain the same. 

Raising a to the power 𝜙(n) and dividing by n, the 

remainder obtained is 1. This forms the backbone of RSA 

cryptosystem. 
 

III. CRYPTOGRAPHY 

III a. Background 
 

The science of securing communication between multiple 

parties is called cryptography [2]. It encompasses all the 

techniques involved in ensuring the security of a 

communication channel. Cryptographic techniques have 

been in use since the advent of civilizations. Ancient Greeks 

and Romans used rudimentary cryptographic techniques 

which involved linear shifting by fixed intervals of the 

letters so as to make the resultant text gibberish. This is an 

example of a substitution cipher. Substitution ciphers use a 

set of rules to substitute each character of the message with 

some other character using a set of rules. The famous 

German Enigma machine is a poly-substitution 

cipher, a more complex type of a substitution cipher. Stream 

ciphers have also been used to encrypt information using a 

string of random characters whose length is exactly equal to 

the length of the message. One-Time-Pad (OTP) is 

an implementation of a stream cipher. 

Two entities, Bob and Alice (could be people, bank and a 

person, two banks, etc.) want to communicate in the 

presence of an eavesdropper John (intrusive third party). 

The objective is to send a message between Bob and Alice 

in the presence of John, without John being able to 

understand what the message is. The original message, 𝑚, 

called plaintext, is to be encrypted to ciphertext, 𝑐, and sent 

from Bob to Alice (or vice-versa). The encrypted message 𝑐 

is then to be decrypted by the receiver to get the original 

plaintext message, 𝑚. This can be done as follows. 

 

- Consider a plaintext 𝑚 originating from Bob. Using an 

encryption key 𝑘, m is transformed (encrypted) to 𝑐. 

Mathematically, this operation is 

represented as 𝑘(𝑚) = 𝑐, where 𝑘 is the encryption function. 

- The ciphertext 𝑐, received is by Alice. It is then decrypted 

using a decryption key 𝑑 back to 𝑚. Mathematically, this 

operation is represented as 𝑑(𝑐) = 𝑚. 

 

Thus, the functions 𝑘 and 𝑑 are inverses of each other, i.e., 𝑑 

= k^(-1). 
 

III b. Public-Key Cryptography 
 

As discussed in the previous section, to encrypt a message 

𝑚, an encryption key, 𝑘 and a decryption key, 𝑑 are 

required. If the same keys are used for encryption and 

decryption, i.e., 𝑘 = 𝑑, then the system is called symmetric 

key cryptography. If different keys are used for encryption 

and decryption, i.e., 𝑘 ≠ 𝑑, then the system is called 

asymmetric key cryptography. 
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A subset of the latter is public key cryptography. A public-

key cryptosystem uses a unique, publicly distributed 

encryption key 𝑘 to encrypt a private message 𝑚 ∈ 𝑀, 

where 𝑀 is the set of all messages, giving the ciphertext 𝑐. 

Mathematically, this operation is represented as 

 

            k(m) = c 

 

The decryption key, 𝑑 is private, and unique for each 

receiver. When 𝑑 operates on 𝑐, the original message, 𝑚 is 

obtained, i.e. 

       𝑑(𝑐) = 𝑚. 

 

Diffie and Hellman suggested in 1976 [6] that 

cryptosystems resistant to known plaintext attacks (i.e. the 

eavesdropper knows a few pairs of plaintexts and 

their corresponding ciphertexts for key recovery) could be 

used to construct one-way functions, called trapdoor 

functions. These functions would be easy to calculate only 

in the forward direction (i.e., during encryption) and 

extremely difficult to invert (i.e., during decryption). They 

suggested the use of modular exponentiation as the trapdoor. 

This trapdoor requires the inversion of modular 

exponentiation which relies on the difficulty of integer 

factorization. Unless the key, 𝑘, is known, it is extremely 

difficult to invert the encryption. 

 

The trapdoor satisfies the following properties [7]: 

 

- The encryption should be easy, i.e., k(m) = c should be 

easy to compute given the key, k, and the message, m. Also, 

given the ciphertext c and a decryption key d, it should be 

easy to recover m.  

- The decryption should be difficult given only c. 

 

 
           III c. RSA Cryptosystem 

 

RSA cryptosystem is a public key cryptosystem which was 

developed by Ron Rivest, Adi Shamir and Leonard 

Adleman in 1977 [8]. Assume that Bob wants to send a 

message to Alice. The following stages are involved in 

RSA: 

 

1. Key Generation: Alice generates two equally 

sized (same number of digits) prime numbers, 𝑝 

and 𝑞 such that the product, 𝑝 × 𝑞 = 𝑛 is of the 

required bit size (1024 bits, 2048 bits, and so on). 

Next, Alice generates a number 𝑒 such that 1 < 𝑒 < 

𝜙(𝑛). 𝑝 and 𝑞 are private while 𝑛 and 𝑒 are public. 

2. Key Sharing: Alice shares her public key (n, e) 

over an insecure channel and bob collects it. 

3. Encryption: Bob has a message 𝑚 (a combination 

of texts, digits, images, etc.) which he wishes to 

share. He converts 𝑚 to binary and adds padding. 

Then, to encrypt 𝑚, Bob carries out the 

computation  

 

         

where 𝑐 is Bob's encrypted message, i.e. the 

ciphertext. 

3.a Rabin suggested in 1979 [9] that m^2(𝑚𝑜𝑑(𝑛)) 

≡ 𝑐 be the encryption scheme to make decryption 

convenient for Alice. But Goldwasser and Micali 

[10] identified some problems that they remedied 

in their paper.  

4. Ciphertext Sharing: Bob shares 𝑐 over an insecure 

channel where Alice collects it. 

5. Decryption: Alice has the ciphertext 𝑐, her public 

key  (𝑛,e) and the private, prime integers (p, q). 

Recall that 1<e< 𝜙(𝑛) and gcd(e,n) =1, i.e., e and n 

share no common factors. To decrypt [11], Alice 

must devise a scheme that would reverse the 

encryption. Thus, given c, e, and n, she needs to 

find an integer d such that  

 
 

6. Decryption Scheme: Since 𝑔𝑐𝑑(𝑚, 𝑛) = 1, using 

Euler's Theorem: 

 

 
 

Comparing m^k(ϕ(n)+1) ≡ m (mod(n)) and m^(ed) ≡ 

m(mod(n)), we have 

        

 
 

 

IV. SECURITY OF RSA  

 

Consider that an eavesdropper, Eve, has access to the public 

key, i.e., 1𝑛. 𝑒o and the ciphertext 𝑐. The problem of 

breaching RSA encryption, also called RSA Problem, is to 

find the message 𝑚 given only the public key (𝑛, 𝑒) and 𝑐. 

Eve does not know the private key 𝑑. Knowledge of 𝑑 

would enable Eve to perform the operation  

 

c^d(mod(n)) ≡ m 

 

Recall form (6) that  

   

   
Since, n = p.q,  
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               IV a. Strong RSA Assumption 

 
It is evident from (8) that breaching the encryption is 
dependent on finding the factorization of n [12], since other 
variables, viz. (n,e) are known and the calculation of k is 
trivial. Thus, the security of ESA encryption depends on the 
hardness of prime factorization of n. To construct RSA 
cryptosystems, it is assumed that Eve knows, or is allowed to 
choose the public exponent e according to her wish. This is 
called Strong RSA Assumption. 

 

     IV b. Possible Avenues of Attack on RSA  

RSA algorithm has a few shortcomings that can exploited as 
follows [14]: 

 

IV.b.1. Lack of Forward Secrecy: A communication 
channel possesses forward security if the cryptographic keys 
used to encrypt information during a communication session 
cannot 

be derived even if the channel is compromised in the future. 

RSA lacks forward secrecy. Let's see how. 

Assume that a client (Bob) makes contact with an e-

commerce website like Flipkart or Myntra (Alice). The 

client first downloads Flipkart server's certificates to 

authenticate and exchange the receive the public key of the 

server to encrypt future messages. Imagine that an 

eavesdopper, Eve, employs a packet sniffer in the client's 

LAN. The eavesdropper gains access to all the encrypted 

information owing through the client's network, including 

the public keys of the website (Flipkart). The only 

protection 
against a breach is that the eavesdropper lacks the private 
key 𝑑. If, somehow d is leaked, then the encryption is 
broken. The private key can be (and has been in the past) 
leaked [15] by cheating employees. 

 

This security threat is overcome by not sharing public keys 
over the channel, and instead using Diffie-Hellman algorithm 
to establish a session key without transmitting over the 
internet. 

 

IV.b.1. Attacks on Some Chosen Ciphertexts: Messages 

that are shorter than the modulus can be compromised quite 

easily due to the inherent vulnerability of modular 

exponentiation, explained by the example below. 
Assume that 𝑛 = 209(19 × 11) and 𝑒 = 3. Let 𝑀 = 5. Then, 

 

       M^e(mod(209)) = 5^3(mod(209))  

      = 125(mod(209)) 

      = 125 

      = 5^3 

      = M^e 

 

Here, M^e < n, and thus, knowing the public exponent e, the 

attacker could easily know break the encryption by finding 

the cube root of the message. Therefore, for all messages 𝑀 

such that M^e < n, only the e^th root of the 

ciphertext 𝑐 needs to be calculated, thereby partially 

breaking the encryption. There's no need to derive the 

decryption key 𝑑. To avoid this, it must be ensured that 𝑀𝑒 ¡ 

𝑛. This is done by adding redundant bits according to 

defined standards. Physically, padding refers to excess area 

added to an object to increase cushioning. Similarly, 

padding in cryptography refers to the addition of redundant 

bits to a message to make the bit-length match the required 

standards. This is accomplished according to the standards 

defined in 𝑃𝐾𝐶𝑆#1𝑣2.2 [16]. 

 

 

IV.b.1. Integer Factorization of Modulus N: 
Mathematical attack refers to finding integer factorization 

algorithms [17], [18], [19] for the modulus. Recall the 

expression for the private key, 

 

    

Finding d essentially boils down to finding 𝜙(𝑛). Since the 

eavesdropper knows that 𝜙(𝑛) = (𝑝 – 1) × (q -1), and also 

that 𝑛 = 𝑝 × 𝑞, finding 𝜙(𝑛) would allow the eavesdopper to 

find 𝑝 and 𝑞. There are no existing algorithms that can solve 

the problem in polynomial time. [20] Trial division is the 

most trivial method which is useless to actually crack RSA 

encryption. 
 

(a) Pollard's rho method [21], [22] is a clever technique that 

uses the same principle as the birthday paradox [23] to 

calculate all random pairs (𝑥𝑖 , 𝑥𝑗) such that 

          

           𝑔𝑐𝑑|xj – xi|, N) > 1 

 

Define 𝑓(x) = 𝑥^2 + 1. Assume that 𝑥0 = 2. Then, 

          𝑥1 = 𝑓(x0)𝑚𝑜𝑑(𝑁) 

and 

 

𝑓(x2) = 𝑓(𝑥1)𝑚𝑜𝑑(𝑁) = 𝑓(𝑓(x0)𝑚𝑜𝑑(𝑁) 

 

As soon as gcd(|xj – xi|, N)>1 is satisfied, a factor is 

obtained. The longer the algorithm runs, the higher the 

probability of finding a solution.  

 

(b) Wiener [24] showed that the modulus 𝑁 could be 

factorized if the decryption key, 𝑑, is small enough such that 

𝑑 < (1/3)N^(1/4). Blomer and May [25] generalized this 

method for every public key pair (𝑁, 𝑒) satisfying 𝑒𝑥+y = 

0(mod(N)) where x < (1/3)N^(1/4) and mod(y) = O(N^(-

3ex/4). 

 

(c) Overmars and Venkatraman [20] proved that all 

semiprimes 𝑁 = 𝑝 × 𝑞, where p, q are Pythagorean primes 

that can be represented as a sum of four square integers, 
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(𝑎𝑐^2) + (𝑏𝑐^2) + (𝑎𝑑^2) + (𝑏𝑑^2). This sum could be 

expressed as the sum of two different squares r^2+ s^2, 

where r^2 = (ac^2) + (bc^2) and s^2 = (ad^2) + (bd^2) by 

applying Euler’s factorization method. 

 

(d) Number field sieve method is used to factor integers of 

the form r^e ± s where r, s ∈ ℤ + explained on-rigorously 

here [26]. 

V. CONCLUSIONS AND CHALLENGES AHEAD 

 

It's been 45 years since Rivest, Shamir, and Adleman 

presented their seminal work on public-key cryptography. 

RSA is the most widely used cryptographic scheme even 

today, with 2048-bit keys recommended by NIST until 

2030. Even the moderate strength 1024-bit key hasn't been 

factored yet using classical algorithms. Needless to say, 

RSA is still the preferred cryptosystem for commercial 

applications. The rise of quantum computing has 

exponentially increased computing power and raised 

concerns over the security of public-key cryptography [27], 

and RSA in particular due to a polynomial-time integer 

factoring algorithm by Shor (1995) [28]. The largest semi 

prime factored till date using quantum algorithms 

is 1, 099, 551, 473, 989 

(10000000000000010011000000000000101000101) in 

binary, which is 41-bits long, still a far-cry from the 

moderate strength 1024-bit key. Part of the problem lies in 

the real-world realization and economic costs of 

implementing quantum computers capable of factoring large 

integers (~ 1024 bits). As of 2022, RSA-250 (250 decimal 

digits or 829 binary digits) has been factored successfully. 

Also, with NIST regularly updating key 

sizes, it remains to be seen how RSA fares against post-

quantum algorithms. 
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