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Abstract:

The locating-chromatic number denote by x;.(G), is the smallest s such that G has a locating
s-colouring. In this research, we study the locating-chromatic number of an Origami graph
with one path on the outer vertex. An origami graph with one path on outer vertex namely
LY, is a graphs with V(LY ) = {u;, vi, wi, x;, yi:1 € {1, ...,n}} and E(LY ) = {ww;, wv,
Viw;, ViXi, Wiyiti € {1, ...,n}} U {ujuijzq, Wiljzq :1 € {1, ...,n —1}} U {u,uy, wyuy}. Also,
we determined the locating-chromatic number of an Origami graph with one path on the outer

vertex.
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1. INTRODUCTION

The concept of metric dimension
was first introduced by Slater [1] in 1975.
Then Melter and Harary [2] in 1976 gave
the concept of the metric dimension of a
graf sort known at this time. Application
metric dimension can be seen in some
areas, such as navigation robots that are
modeled by graf [3], the chemical
compound  classification  [4], and
optimizing the threat detection sensors [5].
The partition dimension of a graph is given
by Chartrand et al [6] which is an
extension of the concept of metric
dimension. The locating-chromatic
number of a graph was first discovered by
Chartrand et al. [7] which is a combination
of two graph concepts, colouring vertices
and partition dimension of a graph. The
locating-chromatic number of a graph
denote by x..(G), is the smallest s such
that G has a locating s-colouring.
Furthermore, in 2003 Chartrand et al. [8]
they constructed a tree of order n>5
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which has a locating-chromatic number s
where s € (3,4, ...,n — 2,n).

Furthermore, it has  been
determined the locating-chromatic number
for several types of graphs, including
Asmiati and Baskoro [9] have
characterized all graphs containing cycles.
Behtoei dan Anbarloei [10] is the joining
of two arbitrary graphs. Purwasih et al.
[11] subdivide the graph on one side.
Syofyan et al. [12] homogeneous lobster
graph. Furthermore Welyyanti et al. [13]
complete an n-ary tree graph. Syofyan et
al. [14] certain tree graph. Then Syofyan et
al. [15] tree embedded in a 2-dimensional
grid.

The locating-chromatic number of
certain barbell graphs on complete graphs
and generalized Petersen graphs have been
determining by Asmiati et al. [16]. For
rainbow connection number of Origami
graph 0,,, has been discovered by Nabila
and Salman. [17]. In 2021 Irawan et
al.[18] has succeeded determine the
locating-chromatic number of 0, and
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subdivision on the outer edge. Next,
Irawan et al. [19, 20] determined certain
barbell operations of Origami graphs and
subdivision of certain barbell operations of
Origami graphs obtained by locating-
chromatic number 5. Motivated by that, in
this research, we will determine the
locating-chromatic number of the Origami
graph with one path on the outer vertex,
namely Lp for n = 3,4,5. The definition
of the following Origami graph is taken
from [17].

Definition 1.1. [17] An origami graph Oy,
n>3 is a graph with V(0,) =
{uj,viwi: i € [1,n]} and E(0,) =
{wiw, wp v, viwii € [Lin]} U {uugy,,
Willizq 'L € [1,n— 1]} U {u,uq, wouy k.

To work out the lower bound of the
locating-chromatic number of a graph, we
use the basic theorems taken from [7, 18].
The set of neighbors of vertex b in G,
denoted by N (b).

Theorem 1.1 [7] Let ¢ be a locating-
coloring in a connected graph G. If a and
b are different vertices of G such that
d(a,w) =d(b,w) for all weV(G)—
{a, b}, then c(a) # c(b). In particular, if a
and b are non-adjacent vertices of G such
that N(a) # N(b), then c(a) # c(b).

Theorem 1.2  [18]
{4 , 3<n<6
5 , otherwise.

XL(On ) =

2. RESEARCH METHODS

The method used to determine the
locating-chromatic number of Origami
graph with one path at the outer vertex,
namely Lln, forn = 3,4,5 as follows :

1) Define an Origami graph with one path
on the outer vertex for n € N, with
n = 3.

2) Determine the colour classes of Lln, for
n = 3,4,5 through the approximation
locating-chromatic number of a graph.

3) Determine the lower bound of XL(L})n)
for n = 3,4,5.
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4) Determine the upper bound of x; (L5, )
forn =34,5.

5) Formulate the results obtained in the
form of theorems and prove them. This
theorem  contains the locating-
chromatic number of the Origami graph
with one path on the outer vertex
X (Lo,) forn = 3,4,5.

3. MAIN RESULTS

In this part, we will determine the
locating-chromatic number of the Origami
graph with one path on the outer vertex
Ly, for n=3,4,5. First, we define an
origami graph with one path on the outer
vertex. Let n € N, with n > 3. An origami
graph with one path on outer vertex Lg,  is

a graphs with
V(L%)n) = {ul-, Vi, Wi, Xi, Vi i € {1, ,n}}

and E(Ly,) = fww;, wv;,
viw;, VX, Wiyl € {1,..,n}} U {u;uyq,
Willj 41 ie{l,..,n—1}} U

{unullwnul}-
Theorem 2.1 x, (L}, ) = 4.

Proof. The first, we assign the lower
bound of x, (L}, ). Let L}, with n >3
Origami graph with one path on the outer
vertex, with
V(L103) = {ul-, Vi, Wi, X, Vi i € {l =

1,2, 3}} and E(Llog) = {uiwi,uivi, viw;,
vixp Wiyl = 1,23} U {Wlieq, Willigg
i =12} U {uzuy,wsuy}. An Origami
graph with one path on the outer vertex
L%,3 contains Origami graph 0, then by
Theorem 1.2. x, (L}, ) > 4.

Furthermore, we assign the upper
bound of Lp, . To show that x, (Lp,) < 4,
consider the 4-colouring ¢ on L as
follow,

Cy = {ug, x1,y1};

C; = {u3, v, X3, y3};

C3 = {uy, vy, v3,%2,¥2 5

Cy = {wy, wy, wsl.
The colouring ¢ will build partition IT on
V(Lp,). We will show that the colour
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codes of all vertices in L})S are distinct. We
have cn(uy) = (0,1,1,1); cn(uy) =
(1,1,0,1);cn(u3) = (1,0,1,1);  cp(vy) =
(0,2,0,1); cn(vy) = (2,0,1,1); cp(vs) =
(2,1,0,1); cp(wy) =(1,2,1,0);cn(wy) =
(2,1,1,0); cn(ws) = (1,1,1,0); cplxy) =

(OI2)1)2)1 CH (XZ) = (3I1IO'2)’ Cl‘[(x3) =
(3;0;1;2)’ CH(yl) = (0'3'2;1);61'[()}2) =
(3,2,1,0); cp(ys) = (2,0,2,1). Because

the colour codes of all vertices Lp, are
distinct, thereby c is a locating-colouring.
So x.(Lp,) < 4.

O

Fig.1 is illustrated a locating-
colouring of an Origami graph with one
path on the outer vertex Lp, —Wwith

x.(Lh, ) = 4.
3

Fig.1 A graph L}, with x, (L}, ) = 4

Teorema 2.2 x,(Ly, ) = 4.

Proof. The first, we assign the lower
bound of x, (L}, ). Let L},, with n >3
Origami graph with one path on the outer

vertex, with
V(LY,) = {w, v, Wi, x, i i = 1,2,3,4)
and E(L%)‘l_) = {uiwi,uivi,viwi,

vix, Wiyl = 1,2,3,4 U {Uili40, Willigq
i =1,2,3} U {uguq, wauy}l. An Origami
graph with one path on the outer vertex
L})4 contains Origami graph 0,, then by

Theorem 1.2. x, (L}, ) = 4.

Furthermore, we assign the upper
bound of Lp,. To show that x, (Lp,) < 4,
consider the 4-colouring ¢ on L%,4 as
follow,

C1 = {vy, wa};

Cy = {uy, us, v3, %1, y1, X3, Y3}

C3 = {Uy, Us, V3, X3, Y2, X4y Ya )i

Cy = {va, Wy, wp, w3}
The colouring ¢ will build partition IT on
V(Lp,). We will show that the colour
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codes of all vertices in Lp, are distinct. We
have  cq(uy) =(1,0,1,1); cpuy) =
(2,1,0,;en(uz) = (2,0,1,1);  cnuy) =
(1,1,0,1); cn(vy) =(0,2,0,1); cp(vy) =
(3,0,1,1); cn(vs) =(3,1,0,1);cn(vy) =
(1,2,0,1); en(wy) = (1,1,1,0); cp(wy) =
(3,1,1,0); cn(ws) = (2,1,1,0); cn(w,) =
(0,1,1,1); cnlxy) =(1,03,2); cnlxy) =
(4,1,0,2); cp(x3) =(4,0,1,2); cplxy) =
(23,01);  cn(yy) =(2,0,2,1);en(y2) =
(4,2,0,1); cn(ys) = (3,0,21); cn(ys) =
(2,0,2,1). Because the colour codes of all

vertices, Lp, are distinct, thereby c is a
locating-colouring. So XL(L},4) < 4.

O
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Fig. 2 is illustrated a locating-
colouring of an Origami graph with one

path on the outer vertex Lp, with
x.(Lh, ) = 4.

Fig.2 A graph L}, with x, (L}, ) = 4

Teorema 2.3 Lp_, x.(Lh, ) = 4.

Proof. The first, we assign the lower
bound of x, (L}, ). Let L}, with n >3
Origami graph with one path on the outer

vertex, with
v(LY,) = {w,vi, Wi, x, v i = 1,2,3,4,5}
and E(L%;s) = {wyw;, vy,

viw;, VX, Wiyi:i = 1,2,3,4‘,5} V)
{uiui+1, Williyq = 1,2,3,4‘} V)
{usuq, wsuy}. An Origami graph with one
path on the outer vertex Lp  contains
Origami graph Os, then by Theorem 1.2.

Furthermore, we assign the upper
bound of L. To show that x;, (Lp,) < 4,
consider the 4-colouring ¢ on Lp as
follow,

C1 = {ug, Uq, Vs; X1, X4, Y5},

Cy = {uy, V1,3, %2, 11 };

C3 = {us, Us, V3, V4, X3, Y2, X5, Va};

Cs = {wy, Wy, w3, wy, ws}.
The colouring ¢ will build partition IT on
V(Lp,). We will show that the colour

codes of all vertices in L})S are distinct. We

have  cp(uy) = (0,1,1,1); cp(u,) =

elSSN 1303-5150

@

(1,0,1,1); cn(us) =(1,1,0,1); cn(us) =
(0,2,1,1); cn(us) = (1,2,0,1); cp(vy) =
(1,0,2,1);  cn(vy) = (2,1,0,1);cn(vs) =
(2,0,1,1); cn(vy) = (1,3,0,1); cp(vs) =
(0,3,1,1); cn(wy) = (1,1,2,0); cn(wy) =
(2,1,1,0);cn(ws) = (1,1,1,0);  cn(wy) =
(1,3,1,0); cn(ws) = (1,2,1,0); cp(xy) =
(0,1,3,2); cn(xz) = (3,01,2); cnlxs) =
(3,1,0,2); cnlxs) =(04,1,2); cplxs) =
(1,40,2);  cn() = (2,03, ;en(y2) =
(3.20,1); cn(ys) =(0,2,2,1); cn(ys) =
(2,4,0,1); cp(ys) =(0,3,2,1). Because

the colour codes of all vertices Lp_ are

distinct, thereby c is a locating-colouring.
So x;,(Lp,) < 4.
0

Fig. 3 is illustrated a locating-
colouring of an Origami graph with one
path on the outer vertex L},S with

XL(L105 ) == 4’.
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Fig.3 A graph Lp,_ with x, (Lp, ) = 4

4. CONCLUSIONS

In this paper, the author examines
the locating-chromatic number of Origami
graphs with one path on the outer vertex
Lp, for n=3,45 where the following
results are obtained:

o x.(Lh,)=4
o x.(Lh,) =4
o x.(Lh, ) =4
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