An Origami Graph with One Path on the Outer Vertex Has Locating-Chromatic Number Four

Agus Irawan ${ }^{1 *}$, Bernadhita Herindri Samodra Utami ${ }^{2}$, Andino Maseleno ${ }^{3}$, Trisnawati ${ }^{4}$, Afrizal Martin ${ }^{5}$
1,2,3,4,5 Department of Information Systems, Faculty of Technology and Computer Sciences, Institut Bakti Nusantara, Pringsewu, Lampung, Indonesia
E-mail: ${ }^{1}$ agusirawan814@gmail.com, ${ }^{2}$ bernadhitaherindri@ yahoo.com,
${ }^{3}$ maselenoandino @gmail.com, ${ }^{4}$ trisnawatistmikpringsewu@gmail.com, ${ }^{5}$ afrizalmartin.mti@gmail.com

Abstract

: The locating-chromatic number denote by $\chi_{\mathrm{L}}(\mathrm{G})$, is the smallest s such that G has a locating s-colouring. In this research, we study the locating-chromatic number of an Origami graph with one path on the outer vertex. An origami graph with one path on outer vertex namely $L_{O_{n}}^{1}$ is a graphs with $V\left(L_{O_{n}}^{1}\right)=\left\{u_{i}, v_{i}, w_{i}, x_{i}, y_{i}: i \in\{1, \ldots, n\}\right\}$ and $E\left(L_{O_{n}}^{1}\right)=\left\{u_{i} w_{i}, u_{i} v_{i}\right.$, $\left.v_{i} w_{i}, v_{i} x_{i}, w_{i} y_{i}: i \in\{1, \ldots, n\}\right\} \cup\left\{u_{i} u_{i+1}, w_{i} u_{i+1}: i \in\{1, \ldots, n-1\}\right\} \cup\left\{u_{n} u_{1}, w_{n} u_{1}\right\}$. Also, we determined the locating-chromatic number of an Origami graph with one path on the outer vertex.

Keywords: locating-chromatic number, origami, graphs, one path
DOI Number: 10.14704/NQ.2022.20.12.NQ77358
NeuroQuantology2022;20(12): 3504-3509

1. INTRODUCTION

The concept of metric dimension was first introduced by Slater [1] in 1975. Then Melter and Harary [2] in 1976 gave the concept of the metric dimension of a graf sort known at this time. Application metric dimension can be seen in some areas, such as navigation robots that are modeled by graf [3], the chemical compound classification [4], and optimizing the threat detection sensors [5]. The partition dimension of a graph is given by Chartrand et al [6] which is an extension of the concept of metric dimension. The locating-chromatic number of a graph was first discovered by Chartrand et al. [7] which is a combination of two graph concepts, colouring vertices and partition dimension of a graph. The locating-chromatic number of a graph denote by $\chi_{\mathrm{L}}(G)$, is the smallest s such that G has a locating s-colouring. Furthermore, in 2003 Chartrand et al. [8] they constructed a tree of order $n \geq 5$
which has a locating-chromatic number s where $s \in(3,4, \ldots, n-2, n)$.

Furthermore, it has been determined the locating-chromatic number for several types of graphs, including Asmiati and Baskoro [9] have characterized all graphs containing cycles. Behtoei dan Anbarloei [10] is the joining of two arbitrary graphs. Purwasih et al. [11] subdivide the graph on one side. Syofyan et al. [12] homogeneous lobster graph. Furthermore Welyyanti et al. [13] complete an n-ary tree graph. Syofyan et al. [14] certain tree graph. Then Syofyan et al. [15] tree embedded in a 2-dimensional grid.

The locating-chromatic number of certain barbell graphs on complete graphs and generalized Petersen graphs have been determining by Asmiati et al. [16]. For rainbow connection number of Origami graph O_{n}, has been discovered by Nabila and Salman. [17]. In 2021 Irawan et al.[18] has succeeded determine the locating-chromatic number of O_{n} and
subdivision on the outer edge. Next, Irawan et al. [19, 20] determined certain barbell operations of Origami graphs and subdivision of certain barbell operations of Origami graphs obtained by locatingchromatic number 5 . Motivated by that, in this research, we will determine the locating-chromatic number of the Origami graph with one path on the outer vertex, namely $L_{O_{n}}^{1}$ for $n=3,4,5$. The definition of the following Origami graph is taken from [17].

Definition 1.1. [17] An origami graph O_{n}, $n \geq 3$ is a graph with $V\left(O_{n}\right)=$ $\left\{u_{i}, v_{i}, w_{i}: i \in[1, n]\right\}$ and $E\left(O_{n}\right)=$ $\left\{u_{i} w_{i}, u_{i} v_{i}, v_{i} w_{i}: i \in[1, n]\right\} \cup\left\{u_{i} u_{i+1}\right.$, $\left.w_{i} u_{i+1}: i \in[1, n-1]\right\} \cup\left\{u_{n} u_{1}, w_{n} u_{1}\right\}$.

To work out the lower bound of the locating-chromatic number of a graph, we use the basic theorems taken from [7, 18]. The set of neighbors of vertex b in G, denoted by $N(b)$.

Theorem 1.1 [7] Let c be a locatingcoloring in a connected graph G. If a and b are different vertices of G such that $d(a, w)=d(b, w)$ for all $w \in V(G)-$ $\{a, b\}$, then $c(a) \neq c(b)$. In particular, if a and b are non-adjacent vertices of G such that $N(a) \neq N(b)$, then $c(a) \neq c(b)$.

Theorem 1.2 [18] $\chi_{\mathrm{L}}\left(O_{n}\right)=$ $\left\{\begin{array}{l}4, \quad 3 \leq n \leq 6 \\ 5\end{array}\right.$
5 , otherwise.

2. RESEARCH METHODS

The method used to determine the locating-chromatic number of Origami graph with one path at the outer vertex, namely $L_{O_{n}}^{1}$, for $n=3,4,5$ as follows :

1) Define an Origami graph with one path on the outer vertex for $n \in \mathbb{N}$, with $n \geq 3$.
2) Determine the colour classes of $L_{O_{n}}^{1}$, for $n=3,4,5$ through the approximation locating-chromatic number of a graph.
3) Determine the lower bound of $\chi_{L}\left(L_{O_{n}}^{1}\right)$ for $n=3,4,5$.
4) Determine the upper bound of $\chi_{L}\left(L_{O_{n}}^{1}\right)$ for $n=3,4,5$.
5) Formulate the results obtained in the form of theorems and prove them. This theorem contains the locatingchromatic number of the Origami graph with one path on the outer vertex $\chi_{L}\left(L_{O_{n}}^{1}\right)$ for $n=3,4,5$.

3. MAIN RESULTS

In this part, we will determine the locating-chromatic number of the Origami graph with one path on the outer vertex $L_{O_{n}}^{1}$ for $n=3,4,5$. First, we define an origami graph with one path on the outer vertex. Let $n \in \mathbb{N}$, with $n \geq 3$. An origami graph with one path on outer vertex $L_{O_{n}}^{1}$ is a graphs with $V\left(L_{O_{n}}^{1}\right)=\left\{u_{i}, v_{i}, w_{i}, x_{i}, y_{i}: i \in\{1, \ldots, n\}\right\}$ and $\quad E\left(L_{O_{n}}^{1}\right)=\left\{u_{i} w_{i}, u_{i} v_{i}\right.$, $\left.v_{i} w_{i}, v_{i} x_{i}, w_{i} y_{i}: i \in\{1, \ldots, n\}\right\} \cup\left\{u_{i} u_{i+1}\right.$, $\left.w_{i} u_{i+1} \quad: i \in\{1, \ldots, n-1\}\right\} \quad \cup$ $\left\{u_{n} u_{1}, w_{n} u_{1}\right\}$.

Theorem 2.1 $\chi_{L}\left(L_{O_{3}}^{1}\right)=4$.
Proof. The first, we assign the lower bound of $\chi_{L}\left(L_{O_{3}}^{1}\right)$. Let $L_{O_{3}}^{1}$, with $n \geq 3$ Origami graph with one path on the outer vertex, with
$V\left(L_{O_{3}}^{1}\right)=\left\{u_{i}, v_{i}, w_{i}, x_{i}, y_{i}: i \in\{i=\right.$
$1,2,3\}\}$ and $E\left(L_{O_{3}}^{1}\right)=\left\{u_{i} w_{i}, u_{i} v_{i}, v_{i} w_{i}\right.$, $\left.v_{i} x_{i}, w_{i} y_{i}: i=1,2,3\right\} \cup\left\{u_{i} u_{i+1}, w_{i} u_{i+1}\right.$ $: i=1,2\} \cup\left\{u_{3} u_{1}, w_{3} u_{1}\right\}$. An Origami graph with one path on the outer vertex $L_{O_{3}}^{1}$ contains Origami graph O_{3}, then by Theorem 1.2. $\chi_{L}\left(L_{O_{3}}^{1}\right) \geq 4$.

Furthermore, we assign the upper bound of $L_{O_{3}}^{1}$. To show that $\chi_{L}\left(L_{O_{3}}^{1}\right) \leq 4$, consider the 4-colouring c on $L_{O_{3}}^{1}$ as follow,

$$
\begin{aligned}
& C_{1}=\left\{u_{1}, x_{1}, y_{1}\right\} ; \\
& C_{2}=\left\{u_{3}, v_{2}, x_{3}, y_{3}\right\} ; \\
& C_{3}=\left\{u_{2}, v_{1}, v_{3}, x_{2}, y_{2}\right\} ; \\
& C_{4}=\left\{w_{1}, w_{2}, w_{3}\right\} .
\end{aligned}
$$

The colouring c will build partition Π on $V\left(L_{O_{3}}^{1}\right)$. We will show that the colour
codes of all vertices in $L_{O_{3}}^{1}$ are distinct. We have $\quad c_{\Pi}\left(u_{1}\right)=(0,1,1,1) ; \quad c_{\Pi}\left(u_{2}\right)=$ $(1,1,0,1) ; c_{\Pi}\left(u_{3}\right)=(1,0,1,1) ; \quad c_{\Pi}\left(v_{1}\right)=$ $(0,2,0,1) ; \quad c_{\Pi}\left(v_{2}\right)=(2,0,1,1) ; \quad c_{\Pi}\left(v_{3}\right)=$ $(2,1,0,1) ; \quad c_{\Pi}\left(w_{1}\right)=(1,2,1,0) ; c_{\Pi}\left(w_{2}\right)=$ $(2,1,1,0) ; \quad c_{\Pi}\left(w_{3}\right)=(1,1,1,0) ; \quad c_{\Pi}\left(x_{1}\right)=$ $(0,2,1,2) ; \quad c_{\Pi}\left(x_{2}\right)=(3,1,0,2) ; \quad c_{\Pi}\left(x_{3}\right)=$ $(3,0,1,2) ; \quad c_{\Pi}\left(y_{1}\right)=(0,3,2,1) ; c_{\Pi}\left(y_{2}\right)=$ $(3,2,1,0) ; \quad c_{\Pi}\left(y_{3}\right)=(2,0,2,1) . \quad$ Because
the colour codes of all vertices $L_{O_{3}}^{1}$ are distinct, thereby c is a locating-colouring. So $\chi_{L}\left(L_{O_{3}}^{1}\right) \leq 4$.

Fig. 1 is illustrated a locatingcolouring of an Origami graph with one path on the outer vertex $L_{O_{3}}^{1}$ with $\chi_{L}\left(L_{O_{3}}^{1}\right)=4$.

Fig. 1 A graph $L_{O_{3}}^{1}$ with $\chi_{L}\left(L_{O_{3}}^{1}\right)=4$
Teorema $2.2 \chi_{L}\left(L_{O_{4}}^{1}\right)=4$.

Proof. The first, we assign the lower bound of $\chi_{L}\left(L_{O_{4}}^{1}\right)$. Let $L_{O_{4}}^{1}$, with $n \geq 3$ Origami graph with one path on the outer vertex,
with
$V\left(L_{O_{4}}^{1}\right)=\left\{u_{i}, v_{i}, w_{i}, x_{i}, y_{i}: i=1,2,3,4\right\}$
and $E\left(L_{O_{4}}^{1}\right)=\left\{u_{i} w_{i}, u_{i} v_{i}, v_{i} w_{i}\right.$, $\left.v_{i} x_{i}, w_{i} y_{i}: i=1,2,3,4\right\} \cup\left\{u_{i} u_{i+1}, w_{i} u_{i+1}\right.$ $: i=1,2,3\} \cup\left\{u_{4} u_{1}, w_{4} u_{1}\right\}$. An Origami graph with one path on the outer vertex $L_{O_{4}}^{1}$ contains Origami graph O_{4}, then by Theorem 1.2. $\chi_{L}\left(L_{O_{4}}^{1}\right) \geq 4$.

Furthermore, we assign the upper bound of $L_{O_{4}}^{1}$. To show that $\chi_{L}\left(L_{O_{4}}^{1}\right) \leq 4$, consider the 4 -colouring c on $L_{O_{4}}^{1}$ as follow,

$$
\begin{aligned}
& C_{1}=\left\{v_{1}, w_{4}\right\} ; \\
& C_{2}=\left\{u_{1}, u_{3}, v_{2}, x_{1}, y_{1}, x_{3}, y_{3}\right\} ; \\
& C_{3}=\left\{u_{2}, u_{4}, v_{3}, x_{2}, y_{2}, x_{4}, y_{4}\right\} ; \\
& C_{4}=\left\{v_{4}, w_{1}, w_{2}, w_{3}\right\} .
\end{aligned}
$$

The colouring c will build partition Π on $V\left(L_{O_{4}}^{1}\right)$. We will show that the colour
codes of all vertices in $L_{O_{4}}^{1}$ are distinct. We have $\quad c_{\Pi}\left(u_{1}\right)=(1,0,1,1) ; \quad c_{\Pi}\left(u_{2}\right)=$ $(2,1,0,1) ; c_{\Pi}\left(u_{3}\right)=(2,0,1,1) ; \quad c_{\Pi}\left(u_{4}\right)=$ $(1,1,0,1) ; \quad c_{\Pi}\left(v_{1}\right)=(0,2,0,1) ; \quad c_{\Pi}\left(v_{2}\right)=$ $(3,0,1,1) ; \quad c_{\Pi}\left(v_{3}\right)=(3,1,0,1) ; c_{\Pi}\left(v_{4}\right)=$ $(1,2,0,1) ; c_{\Pi}\left(w_{1}\right)=(1,1,1,0) ; c_{\Pi}\left(w_{2}\right)=$ $(3,1,1,0) ; c_{\Pi}\left(w_{3}\right)=(2,1,1,0) ; c_{\Pi}\left(w_{4}\right)=$ $(0,1,1,1) ; \quad c_{\Pi}\left(x_{1}\right)=(1,0,3,2) ; \quad c_{\Pi}\left(x_{2}\right)=$ $(4,1,0,2) ; \quad c_{\Pi}\left(x_{3}\right)=(4,0,1,2) ; \quad c_{\Pi}\left(x_{4}\right)=$ $(2,3,0,1) ; \quad c_{\Pi}\left(y_{1}\right)=(2,0,2,1) ; c_{\Pi}\left(y_{2}\right)=$ $(4,2,0,1) ; \quad c_{\Pi}\left(y_{3}\right)=(3,0,2,1) ; \quad c_{\Pi}\left(y_{4}\right)=$ ($2,0,2,1$). Because the colour codes of all vertices, $L_{O_{4}}^{1}$ are distinct, thereby c is a locating-colouring. So $\chi_{L}\left(L_{O_{4}}^{1}\right) \leq 4$.

Fig. 2 is illustrated a locating- path on the outer vertex $L_{O_{4}}^{1}$ with colouring of an Origami graph with one

$$
\chi_{L}\left(L_{O_{4}}^{1}\right)=4
$$

Fig. 2 A graph $L_{O_{4}}^{1}$ with $\chi_{L}\left(L_{O_{4}}^{1}\right)=4$
Teorema 2.3 $L_{O_{5}}^{1}, \chi_{L}\left(L_{O_{5}}^{1}\right)=4$.

Proof. The first, we assign the lower bound of $\chi_{L}\left(L_{O_{5}}^{1}\right)$. Let $L_{O_{5}}^{1}$, with $n \geq 3$ Origami graph with one path on the outer vertex,
with
$V\left(L_{O_{5}}^{1}\right)=\left\{u_{i}, v_{i}, w_{i}, x_{i}, y_{i}: i=1,2,3,4,5\right\}$
and $E\left(L_{O_{5}}^{1}\right)=\left\{u_{i} w_{i}, u_{i} v_{i}\right.$,
$\left.v_{i} w_{i}, v_{i} x_{i}, w_{i} y_{i}: i \quad=1,2,3,4,5\right\} \quad \cup$ $\left\{u_{i} u_{i+1}, w_{i} u_{i+1} \quad: i=1,2,3,4\right\} \quad \cup$ $\left\{u_{5} u_{1}, w_{5} u_{1}\right\}$. An Origami graph with one path on the outer vertex $L_{O_{5}}^{1}$ contains Origami graph O_{5}, then by Theorem 1.2. $\chi_{L}\left(L_{O_{5}}^{1}\right) \geq 4$.

Furthermore, we assign the upper bound of $L_{O_{5}}^{1}$. To show that $\chi_{L}\left(L_{O_{5}}^{1}\right) \leq 4$, consider the 4 -colouring c on $L_{O_{5}}^{1}$ as follow,

$$
\begin{aligned}
& C_{1}=\left\{u_{1}, u_{4}, v_{5} ; x_{1}, x_{4}, y_{5}\right\} ; \\
& C_{2}=\left\{u_{2}, v_{1}, v_{3}, x_{2}, y_{1}\right\} ; \\
& C_{3}=\left\{u_{3}, u_{5}, v_{2}, v_{4}, x_{3}, y_{2}, x_{5}, y_{4}\right\} ; \\
& C_{4}=\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right\} .
\end{aligned}
$$

The colouring c will build partition Π on $V\left(L_{O_{5}}^{1}\right)$. We will show that the colour codes of all vertices in $L_{O_{5}}^{1}$ are distinct. We have $\quad c_{\Pi}\left(u_{1}\right)=(0,1,1,1) ; \quad c_{\Pi}\left(u_{2}\right)=$
$(1,0,1,1) ; \quad c_{\Pi}\left(u_{3}\right)=(1,1,0,1) ; \quad c_{\Pi}\left(u_{4}\right)=$
$(0,2,1,1) ; \quad c_{\Pi}\left(u_{5}\right)=(1,2,0,1) ; \quad c_{\Pi}\left(v_{1}\right)=$
$(1,0,2,1) ; \quad c_{\Pi}\left(v_{2}\right)=(2,1,0,1) ; c_{\Pi}\left(v_{3}\right)=$
$(2,0,1,1) ; \quad c_{\Pi}\left(v_{4}\right)=(1,3,0,1) ; \quad c_{\Pi}\left(v_{5}\right)=$
$(0,3,1,1) ; c_{\Pi}\left(w_{1}\right)=(1,1,2,0) ; c_{\Pi}\left(w_{2}\right)=$
$(2,1,1,0) ; c_{\Pi}\left(w_{3}\right)=(1,1,1,0) ; \quad c_{\Pi}\left(w_{4}\right)=$
$(1,3,1,0) ; \quad c_{\Pi}\left(w_{5}\right)=(1,2,1,0) ; \quad c_{\Pi}\left(x_{1}\right)=$
$(0,1,3,2) ; \quad c_{\Pi}\left(x_{2}\right)=(3,0,1,2) ; \quad c_{\Pi}\left(x_{3}\right)=$
$(3,1,0,2) ; \quad c_{\Pi}\left(x_{4}\right)=(0,4,1,2) ; \quad c_{\Pi}\left(x_{5}\right)=$
$(1,4,0,2) ; \quad c_{\Pi}\left(y_{1}\right)=(2,0,3,1) ; c_{\Pi}\left(y_{2}\right)=$ $(3,2,0,1) ; \quad c_{\Pi}\left(y_{3}\right)=(0,2,2,1) ; \quad c_{\Pi}\left(y_{4}\right)=$ $(2,4,0,1) ; \quad c_{\Pi}\left(y_{5}\right)=(0,3,2,1) . \quad$ Because the colour codes of all vertices $L_{O_{5}}^{1}$ are distinct, thereby c is a locating-colouring. So $\chi_{L}\left(L_{O_{5}}^{1}\right) \leq 4$.

Fig. 3 is illustrated a locatingcolouring of an Origami graph with one path on the outer vertex $L_{O_{5}}^{1}$ with $\chi_{L}\left(L_{O_{5}}^{1}\right)=4$.

Fig. 3 A graph $L_{O_{5}}^{1}$ with $\chi_{L}\left(L_{O_{5}}^{1}\right)=4$

4. CONCLUSIONS

In this paper, the author examines the locating-chromatic number of Origami graphs with one path on the outer vertex $L_{O_{n}}^{1}$ for $n=3,4,5$ where the following results are obtained:

- $\chi_{L}\left(L_{O_{3}}^{1}\right)=4$
- $\chi_{L}\left(L_{O_{4}}^{1}\right)=4$
- $\chi_{L}\left(L_{O_{5}}^{1}\right)=4$

ACKNOWLEDGMENT

This paper has been presented at National Seminar on Technology, Business, and Multidisciplinary Research in Yogyakarta, Indonesia, 23 - 24 August 2022. This work is supported by Institut Bakti Nusantara, Lampung, Indonesia. We gratefully appreciate this support.

5. REFERENCES

[1]. P. Slater, "Leaves of Trees",Congressus Numerantium vol.14, pp. 549 - 559, 1975.
[2]. F. Harary, and R. A. Melter, "On the Metric Dimension of a Graph," Ars Combinatoria, vol. 2, pp. 191-195, 1976.
[3]. V. Saenpholphat, and P. Zhang "Conditional resolvability: a survey",

International Journal of Mathematics and Mathematical Sciences, vol. 38, pp. 1997-2017, https://doi.org/10.1155/S0161171204 311403, 2004.
[4]. S. Khuller, B. Raghavachari, and A. Rosenfeld, "Landmarks in graphs", Discrete Applied Mathematics, vol.70, no.3, pp 217-229, https://doi.org/10.1016/0166-218X(95)00106-2, 1996.
[5]. M. Johnson, "Structure-activity maps for visualizing the graph variables arising in drug design," Journal of Biopharmaceutical Statistics, vol.3, no. 2, pp. 203-236, https://doi.org/10.1080/10543409308 835060, 1993.
[6]. G. Chartrand, E. Salehi, and P. Zhang, "The partition dimension of a graph. Aequationes Math", 59: 45 54,
https://doi.org/10.1007/PL00000127, 2000.
[7]. G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater and P. Zhang, "The locating-chromatic number of a graphs", Bulletin of the Institute of Combinatorics and its Applications, 36, 89-101, 2002.
[8]. G. Chartrand, D. Erwin, M. A. Henning, P. J. Slater and P. Zhang, "Graf of order n with locatingchromatic number $n-1 "$, Discrate Mathematics, 269: 1-3, $65-79$, https://doi.org/10.1016/S0012-365X(02)00829-4, 2003
[9]. Asmiati, and E. T. Baskoro,"Characterizing all graphs containing cycles with locatingchromatic number 3 ", AIP Conference Proceedings, 1450(3): 351 - 357, https://doi.org/10.1063/1.4724167, 2012.
[10]. A. Behtoei, and M. Anbarloei, "The locating-chromatic number of the join of graphs", Bulletin of the Iranian Mathematical Society, 40:6, 14911504, 2014.
[11]. I. A. Purwasih, E. T. Baskoro, H. Assiyatun, and D. Suprijanto, "The bounds on the locating-chromatic number for a subdivision of a graph on one edge",Procedia Computer Science, 74, 84 - 88, https://doi.org/10.1016/j.procs.2015.1 2.080, 2015.
[12]. D. K. Syofyan, E. T. Baskoro, and H. Assiyatun, "On the locatingchromatic number of homogeneous lobsters", AKCE Int. J. Graphs Comb, 10:3, 245-252, https://www.tandfonline.com/doi/abs/ 10.1080/09728600.2013.12088741, 2013.
[13]. D. Welyyanti, Baskoro E T, Simanjuntak R, and S. Uttunggadewa, "On locating-chromatic number of complete n -ary tree", AKCE Int. J. Graphs Comb, 3:3, 309-315, 2013.
[14]. D. K. Syofyan, E. T. Baskoro, and H. Assiyatun, "Trees with certain locating-chromatic number", Journal of Mathematical and Fundamental Sciences, 48:1, 39-47, https://doi.org/10.5614/j.math.fund.sc i.2016.48.1.4, 2016.
[15]. D. K. Syofyan, E. T. Baskoro, and H. Assiyatun, "The locating-chromatic number of trees embedded in 2-
dimensional grid", AIP Conference Proceedings, 1707, 1-7, https://doi.org/10.1063/1.4940824, 2016.
[16]. Asmiati, I. K. G. Yana, and L. Yulianti, "On The Locating-chromatic Number of Certain Barbell Graphs", International Journal of Mathematics and Mathematical Sciences, 1-5, https://doi.org/10.1155/2018/5327504 , 2018.
[17]. S. Nabila, and A. N. M. Salman, "The Rainbow Conection Number of Origami Graphs and Pizza Graphs", Procedia Computer Science, 74, 162167,
https://doi.org/10.1016/j.procs.2015.1 2.093, 2015.
[18]. A. Irawan, Asmiati, L. Zakaria, and K. Muludi, "The locating-chromatic number of origami graphs", Algorithms, 14:167, 1-15, https://doi.org/10.3390/a14060167 2021.
[19]. A. Irawan, Asmiati, S. Suharsono,
and K. Muludi, "The LocatingChromatic Number of Certain Barbell Origami Graphs", Journal of Physics:
Conference Series, 1750, 1-13, Origami Graphs", Journal of Physics:
Conference Series, 1750, 1-13, https://doi.org/10.1088/17426596/1751/1/012017, 2021.
[20]. A. Irawan, Asmiati, S. Suharsono, K. Muludi, and H. S. U. Bernaditha, "Subdivision of Certain Barbell Operation of Origami Graphs has Locating-Chromatic Number Five", IJCSNS International Journal of Computer Science and Network Security, vol.21, no.9, pp. 79-85, http://paper.ijcsns.org/07_book/20210 9/20210909.pdf, 2021. "Subdivision of Certain Barbel

