

Neuroquantology | November 2022 | Volume 20 | Issue 19 | Page 5240-5244|Doi: 10.48047/nq.2022.20.19.nq99495
KUKKA RAJ KUMAR et al/ DESIGNING AN ASYNCHRONOUS FIFO USING VERILOG

 eISSN1303-5150 www.neuroquantology.com

DESIGNING AN ASYNCHRONOUS FIFO USING
VERILOG

#1KUKKA RAJ KUMAR, Assistant. Professor,
#2PABBATHI VISHNU, Assistant. Professor,

Department of Electronics Communication Engineering,
SREE CHAITANYA INSTITUTE OF TECHNOLOGICAL SCIENCES, KARIMNAGAR, TS.

ABSTRACT:
The First-In, First-Out (FIFO) method is used to manage computer work requests that originate from stacks or queues,
assuring that the request with the earliest arrival time receives processing priority. Using the First-In, First-Out (FIFO)
logic, data from one clock domain is transmitted to other clock domains upon request. This task is accomplished in the
domain of hardware by a collection of flip-flops or read/write memory components. A more efficient method for
constructing a First-In-First-Out (FIFO) system is to compare write and read pointers that are generated in separate
clock zones and not simultaneously. The method of comparing pointers in an asynchronous FIFO is used to reduce the
number of synchronization flip-flops required to construct the FIFO. In order to effectively construct and evaluate the
design using this methodology, it is necessary to employ additional methodologies, as outlined in this academic
article. Utilizing mixed binary/gray counters that leverage the inherent binary ripple carry logic is one method
employed by this design to improve the efficacy of the First-In-First-Out (FIFO) process.
Key Words: Asynchronous FIFO, FIFO Design, Full andEmptyDeduction
DOI Number: 10.48047/nq.2022.20.19.nq99495 Neuroquantology 2022; 20(19):5240-5244

1.INTRODUCTION

 One clock domain is utilized to sequentially write data
values into a FIFO buffer. To read data values from the
same FIFO buffer one after the other, a separate clock
domain is used. The times of these two clock domains
are not synchronized. An asynchronous FIFO is
commonly created by using Gray code pointers that
are synced into the opposite time domain before
issuing synchronous FIFO full or empty status signals.
Comparing the pointers concurrently before setting
the full or empty status bits is a fascinating and novel
approach of creating FIFO full and empty bits.

 Full and Empty Deductions
The most difficult component of any FIFO system is
getting the full and empty states to work correctly. As
a result, something else must distinguish between full
and empty. When the two points are equal, the
approach divides the address space into four
quadrants and decodes them using the two MSBs of
the two counters. This indicates whether the FIFO was
filled or emptying.
Because the wptr is one quadrant behind the rptr,
FIFO is fully operational. It indicates that the memory
is "possibly going full" when the write pointer is one
region behind the read pointer, as shown. When the

direction button is pressed, this occurs.

Fig-1:Because the rptr is one quadrant behind the

wptr, FIFO runs out of room.

5240

Neuroquantology | November 2022 | Volume 20 | Issue 19 | Page 5240-5244|Doi: 10.48047/nq.2022.20.19.nq99495
KUKKA RAJ KUMAR et al/ DESIGNING AN ASYNCHRONOUS FIFO USING VERILOG

 eISSN1303-5150 www.neuroquantology.com

Fig-2:Because the wptr is one quadrant behind the rptr,

FIFO is fully operational.
When the write pointer is one quadrant ahead of the
read pointer, the status "possibly going empty" is
displayed. The direction latch is not locked when this
occurs.

Fig -3: Because the wptr is one quadrant behind the

rptr, FIFO is fully operational.
 When the FIFO is reset, you may determine it "is

going empty" by clearing the direction latch. The
direction latch removes the ambiguity in the address
identification decoder, therefore setting it up and
taking it down is not time-dependent. Because it only
requires two 4-input look-up tables, the Xilinx FPGA
circuitry for decoding the two wptrMSBs and two
rptrMSBs is simple to implement. The second, more
challenging issue stems from the fact that the write
and read clocks are not in sync. When one or both
counters change a large number of bits at about the
same moment, comparing them can result in
inaccurate decoding leaps. According to the findings
of this investigation, only one bit changes from one
Gray count sequence to the next. There is no
possibility of error during decoding because any
decoder or comparator will only move from one
excellent output to the next.

FIFO2.v
 This is the module that contains all of the clock

domains at the highest level. The top module serves
as a wrapper for the other FIFO modules required for
the architecture. If this FIFO were to be utilized in a

larger ASIC or FPGA design, the top-level wrapper
would most likely be removed. This would make it
easier to group the remaining FIFO modules into their
respective clock domains for improved synthesis and
static timing analysis.

 FIFOmem.v
This FIFO memory buffer is used by both the write and
read clock domains. This buffer is most likely a dual-
port, synchronous RAM. The FIFO buffer can be
utilized with various types of memory.

 async_cmp.v
 Asynchronous pointer-comparison module signals

control the "full" and "empty" state bits, which are set
at various times. This section's logic is all
combinational comparison logic. This code contains no
sequential logic.

 rptr_empty.v
 This module contains the FIFO read pointer and empty-

flag code, and it is mostly in sync with the read-clock
domain. Only when the rptr rises can the aempty_n
signal be asserted. When the wptr grows, which is not
in sync with rclk but is in sync with the rclk-domain, the
signal is de-asserted.

 wptr_full.v
 This module, which is mainly in sync with the write-

clock domain, contains the FIFO write pointer and full-
flag logic. Only when wptrincremented and wrst_n
occur may afull_n be asserted. This means that
asserting the afull_nsignal (an input to this module)
occurs concurrently with the wclk domain, but de-
asserting it occurs concurrently with the
rptrincremented, which is not concurrent with wclk.At
Different Times, Empty and Full Production

 Asynchronous Generation of Full And Empty
The async_cmp function displays the aempty_n and
afull_n asynchronously processed signals. It is de-
asserted on the rising edge of a wclk rather than the
rising edge of a rclk. Similarly, the afull_n signal is
activated for a wclk and deactivated for a rclk. The
following read activity will be halted by using the
empty signal. The leading edge of the empty signal
must be in sync with the read clock, but so must the
railing edge. This is accomplished with a two-stage
synchronizer that results in r_empty. The
symmetrically equivalent approach is used to
generate the w_full signal.

5241

Neuroquantology | November 2022 | Volume 20 | Issue 19 | Page 5240-5244|Doi: 10.48047/nq.2022.20.19.nq99495
KUKKA RAJ KUMAR et al/ DESIGNING AN ASYNCHRONOUS FIFO USING VERILOG

 eISSN1303-5150 www.neuroquantology.com

Fig-4Asynchronously comparing references to ensure they are both full and

empty
 Resetting the FIFO

 The first significant FIFO event occurs during the
FIFO-reset process. We can see the async_cmp
module, the full and empty synchronizers of the
wptr_full and rptr_empty modules, and the
relationships between these modules. When the
FIFO is reset, these modules perform four critical
functions.

 The reset signal immediately clears the w_fullflag.
Even if you reset, the r_emptyf delay will remain.

 The pointer comparator determines that the
pointers are equal because the reset signal clears
both FIFO points.

 The direction bit is removed by the reset.
 After the direction bit has been cleared and both

values are equal, the empty_n bit is set, which
sets the r_emptyflag ahead of time.

Parallel-In, Parallel-Out, Universal ShiftRegister
The parallel-in/parallel-out shift register's function is
to take parallel data, shift it, and then send it out. A
universal shift register can execute multiple things at
once and has a capability known as "parallel-
in/parallel-out."
Four bits of data are delivered to a shift register that
works with parallel-in and parallel-out at DA DB DC
DD. The mode control, which can accept multiple
inputs, determines whether to load in parallel or shift.
Some real gadgets may also allow you to adjust the
way you shift using the mode control. Every clock
pulse will cause one bit of data to be transferred. The
values that have been altered are in the outputs QA
QB QC QD.

Fig-5:4-Stage Shift Register with Parallel-in and

Parallel-Out
The terms "data in" and "data out" are used to

cascade several steps. While we investigate this, we
can only cascade information for right shifting. To
allow the left-shift data flow, two left-pointing signals
labeled "data in" and "data out" could be inserted
above. The diagram below depicts the components of
a right shifting parallel-in/parallel-out shift register.
Even though they are not strictly necessary for the
parallel-in/parallel-out shift register, the tri-state
buffers are included in the device shown below.
Because the 74LS395 is so similar to our idea of a
perfect right shifting parallel-in/parallel-out shift
register, we utilize a very simplified version of the
information above from the data sheet. When data
enters the FFs, the AND-OR multiplexer is controlled
by LD/SH. If LD/SH'=1, which activates the top four
AND gates, DA, DB, DC, and DD can be applied to the
four FF data inputs at the same time. Keep an eye out
for the inverter bubble at the four FFs' clock inputs.
This demonstrates that the 74LS395 stores data on
the low to high shift's negative going clock. At the
following clock down, the four bits of data will be
timed in tandem from DA DB DC DD to QA QB QC QD.
This "real part" must have OC' set to low so that data
can be accessible via the output pins as well as the
internal FFs.

Fig-6:Inside and outside parallelism Taking turns with

the tri-state What It Is
If LD/SH'=0 on the next negative clock edge, the
previously loaded data can be shifted to the right one
bit. The data would leave our 4-bit shift register for
good after four clocks. If our device was not cascaded
from QD' to SER of another device, the data would be
lost.

Fig -7: Parallelism both inside and outside the Transfer

Register Above is a data pattern for the sources DA,
DB, DC, and DD.

The code is forwarded to QA QB QC QD. It is then
shifted slightly to the right. The incoming data,
represented by the letter X, is unknown to us. If the

5242

Neuroquantology | November 2022 | Volume 20 | Issue 19 | Page 5240-5244|Doi: 10.48047/nq.2022.20.19.nq99495
KUKKA RAJ KUMAR et al/ DESIGNING AN ASYNCHRONOUS FIFO USING VERILOG

 eISSN1303-5150 www.neuroquantology.com

input (SER) were grounded, we would know what data
(0) was transferred in. It also illustrates that the right is
moving two spaces, which necessitates the use of two
clocks.

Fig-8:ShiftRight
The graphic above depicts the hardware used to shift
data to the right. This figure is too simple to deal with,
other than to demonstrate how simple it is in
comparison to the figures that will follow.

The data that has been shifted to the right is displayed
above to be compared to the previous right-shifter.

Fig-9:ShiftLeft

To shift left, we must first change the FFs. than the
right gear that came before it. SI and SO are also in
the wrong places. SI is relocating to QC. Transitioning
from QC to QB. Moving from QB to QA. When QA cuts
the link to SO, another shifter SI may be affected.

Fig-10:Left or right shift, Right Action

The letters L' and R can be used to move the
imaginary shift register illustrated above in either
direction. Setting L'/R=1 changes the typical direction,
which is to the right. When L'/R equals 1, the

multiplexer AND gates R are activated.
The data enters at SR, passes through QA, QB, and QC,
and then exits at SR cascade. If this pin is used, the SR
of something else may shift to the right. What
happens if we set L'/R to zero?

Fig-11:The shift left/right key and the left action key
When L'/R=0, the multiplexer AND gates labeled L
turn on, resulting in the identical path as shown by
the arrows in the preceding "shift left" figure. The
data enters at SL, passes through QC, QB, and QA, and
finally exits at SL cascade. If this pin is utilized, the SL
of something else may shift to the left. The simplicity
of the two images above that demonstrate "shift
left/right register" is the nicest part. The left-right
setting L'/R=0 is straightforward. The parallel data
loading mentioned in the section title is required for a
business part. This is seen in the following image. Now
that we know how to utilize the L'/R gates to shift to
the left and right, let's add the SH/LD', shift/load, and
"load" AND gates to allow data to be loaded in parallel
from inputs DA, DB, and DC. If SH/LD' is 0 and gates R
and L are both turned off. BUT gates "load" to
transport data from DA to DB to DC to the FF data
ports. The data will be sent to QA QB QC by the next
clock CLK.

Fig-12:Load and shift (left/right).

IfSH/LD'ischangedtoSH/LD'=1,theANDgateslabelled"lo
ad" are disabled, allowing the left/ right control L'/R
toset the direction of shift on the L or R AND gates.
Shifting isas in the previous figure The only thing needed
to produce aviable integrated deviceis to add the
fourth AND gate to the multiplexer as alluded for the
74ALS299. This is shown in the next section for that
part.
2.DESIGN AND ANALYSE A SYNCHRONOUS FIFO
Create and test a FIFO with various read and write
logics. The data in each of the 64 sources we examined
was 32 bits long. The oldest request is dealt with first
when utilizing the FIFO approach to handle program

5243

Neuroquantology | November 2022 | Volume 20 | Issue 19 | Page 5240-5244|Doi: 10.48047/nq.2022.20.19.nq99495
KUKKA RAJ KUMAR et al/ DESIGNING AN ASYNCHRONOUS FIFO USING VERILOG

 eISSN1303-5150 www.neuroquantology.com

work requests from stacks or lines. A collection of flip-
flops or read/write memory with FIFO logic is used in
hardware to store data from one clock domain and
deliver it to other clock domains when requested. The
clock domain that delivers data to the FIFO is referred
to as "write logic," whereas the clock domain that
receives data from the FIFO is referred to as "read
logic."

Fig-13:FIFOmemoryI/O

3.CONCLUSIONS
When developing an asynchronous FIFO, you must
consider every detail, such as how to produce
pointers and the distinction between full and empty
generation. When critical aspects are overlooked, the
design is frequently incorrect and easily verifiable.
FIFO design issues are typically discovered by
simulating a gate-level FIFO architecture and noting
real delays on the back. Gray code pointers are used
to safely sync FIFO pointers into the opposite clock
domain. Gray code pointers are used to safely sync
FIFO pointers into the opposite clock domain.The
most difficult aspect of a FIFO plan may be
determining the full status. Dual n-bit Gray code
counters can be used to synchronize an n-bit pointer
with the other clock domain as well as to perform
"full" comparisons with a (n-1)-bit pointer. When
doing FIFO design, another handy thing you can do is
sync binary FIFO pointers using the methods provided.
The FIFO-empty state is easily obtained by comparing
and equaling the synchronized n-bit write pointer to
the n-bit read pointer. The methods suggested in this
article should be able to work with asynchronous
clocks with small to big discrepancies.
REFERENCES
1. N.Verma,“AnalysistowardsminimizationoftotalSRA

Menergy over active and idle operating modes,”
IEEETrans. on VLSI Systems, Vol. 19, No. 9, pp.
1695-1703,Sept.2010.

2. K.Nii,etal.,“A65nmultra-high-densitydual-
portSRAMwith 0.71um28T-cellforSoC,” IEEE Symp.
on VLSICircuits, pp. 130-131, 2006.R. Nicole, “Title
of paper with only first word
capitalized,”J.NameStand.Abbrev.,inpress.

3. W.-H. Du, et al, “An Energy-Efficient 10T SRAM-
based FIFO Memory Operating in Near-/Sub-
threshold Regions,” IEEE System-on-Chip

Conference, pp. 19-
23,Sept.2011.K.Elissa,“Titleofpaperifknown,”unpu
blished.

4. D. Markovic, et al., “Ultralow-power design
innear-threshold region,” IEEE Proceedings, vol.
98, no 2, pp.237-252,Feb.2010.

5. I.-J. Chang, et al., “A 32 kb 10T Sub-Threshold
SRAM Array with Bit-Inter leaving and Differential
Read Scheme in 90 nm CMOS,” IEEE Journal of
Solid-StateCircuits,pp650-
658,Feb.2009.K.Elissa,“Titleofpaperifknown,”unpu
blished.

6. Y.-T.Chiu,etal., “Subthreshold Asynchronous FIFO
Memory for Wireless Body Area Networks
(WBANs)”,International Symposium on Medical
Information and Communication
Technology(ISMICT),March2010.

7. M.-H. Tu, et al, “Single-ended Subthreshold SRAM
withAsymmetrical Write/Read-Assist,” in IEEE
Trans.
onCircuitsandSystems,Vol.57,No.12,pp.3039-
3047,Dec.2010.K.Elissa,“Titleofpaperifknown,”unp
ublished.

8. M.-T.Chang,etal.,“ARobustUltra-
LowPowerAsynchronous FIFO Memory with Self-
Adaptive PowerControl,”IEEESystem-on-
ChipConference,pp.175-178,2008.

9. W.-H.Du,etal.,“A2kbbuilt-inrow-
controlleddynamicvoltage scaling near-/sub-
threshold FIFO memory forWBANs," IEEE
International Symposium on VLSI
Design,Automation,and Test(VLSI-DAT,pp.1-
4,2012.

5244

