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ABSTRACT— 
In textile commodities, the flaws recognition is the most time-consuming process which discovers 
the Fabric Defects (FDs) to boost the fabric quality. To combat this issue, an Enhanced Pair wise-
Potential Activation Layer in Optimized Convolutional Neural Network (EPPAL-OCNN) model has 
been recently designed which solves the undesired convergence of CNN to increase the recognition 
rate. But, OCNN training needs more labeled samples and takes more time to label the fabric 
samples. Hence, this article designs an EPPAL- Optimized Multi-Criteria CNN (EPPAL-OMCCNN) 
model based on the multi-objective active sampling mechanism. The main aim of this model is to 
reduce the labeling time while considering more fabric samples for OCNN training. Initially, the 
OCNN structure is created using a limited amount of samples. After that, more influential samples 
are labeled based on the multi-objective sampling mechanism. By using these labeled samples, the 
OCNN is upgraded to recognize and categorize the FDs with the highest precision.Further, the test 
samples from the TILDA corpus are used to validate the EPPAL-OMCCNN which reveals that it attains 
96.27% of accuracy compared to the classical models. 
Keywords—Fiber defects recognition, EPPAL-OCNN, Image labelling, Active learning, Multi-objective 
sampling 
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INTRODUCTION 
Textile is a fundamental commodity that is 
commonly evolved. Microfiber threads are 
generally made from an organic substance. 
The maintenance stage demonstrates a 
weakness in the fabric's pattern. A faulty 
mounted tool or pattern shrinkage on the 
sewing process can cause substantial 
differences between the time of its 
development in filament, threads, or row  
 
defects like leather misdrawing, materials, 
vagueness, and cotton damask [1]. 
Deficiencies can reduce operational costs by 
45-65%. Weavers should regularly examine 

the fabric material for severe design flaws in 
modern spinners by navigating a couple of 
gadgets, as a material fault is prevented or 
remedied when recognized. As a result, the 
garment sector has advanced to fully 
computerized fiber examination for important 
fiber dependability calculations. 
Artificial intelligence also termed learning is a 
grading technique that finds and highlights 
flaws in raw resources [2]. Cloth durability 
validation is generally the sole way to increase 
dependability, aiding in the timely and 
effective restoration of very minor flaws. 
Unfortunately, rigidity produces deformation, 
and minor flaws go unnoticed most of the 
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time. When compared to traditional findings, 
simple enhanced fabric screening improves 
the identification rate by roughly 80%. As a 
result, entirely computerized inspections are a 
viable option for enhancing apparel revenue 
when lowering operational costs [3]. 
Nonetheless, it can be difficult. Most modern 
fiber inspection models are vision-based, 
using image analyses and feature learning 
algorithms that frequently separate and 
detect degraded fabrics. The models for FD 
identification are classified as stochastic, 
empirical, structural, multimodal, learning, 
and template-based. These models appeared 
to be a failure, costly, involved with specific 
flaws and conflicting with differences in fiber 
productivity and form. Recently, a variety of 
models for identifying FDs were evolved [4]. 
Among several models, the upgraded version 
was designed to provide high longevity while 
dealing with variations in fiber patterns and 
defect grades. Conversely, it has proved less 
effective in detecting flaws than the 
recurrence unit of a structured fiber. Deep 
learner algorithms, such as CNN, were utilized 
to efficiently segregate fabric designs in the 
early modern era. CNN types [5-7] include 
Fully Convolutional Network (FCN), U-Net and 
others, that control essential blocks such as 
convolution, upsampling, and activation 
phases. But, it obtains characteristics 
alongside a whole context relationship and 
linguistics information which were useless for 
projecting appropriate visual qualities since 
standard CNNs are extensively scaled and 
confined variances were removed by pooling 
[8]. As a result, certain FDs were classified as 
restricted motifs since they were represented 
by minimal gray levels. An emergence of 
imperfections on fiber analogies, including 
overlapping, deterioration, granular groups, 
and so on, represents the major structural 
properties and frequently  
 
comprises just about 35% of the pixels, 
leading to very imbalanced FD samples. To 
enhance restricted pattern localization, 
various practices were necessary to modify 
CNN's efficiency. Another major issue in deep 

learner was that data from real-world 
examples were not necessarily distributed 
extensively across classes [9]. 
As a result, when building the CNN for 
recognizing FDs, two critical objectives were 
taken into account: the regeneration of 
constrained patterns and the handling of an 
unbalanced sample. To eliminate 
discrepancies on fabric visuals, the 
fundamental CNN must not have several 
convolutional layers and ought to keep visual 
continuity in feature maps by pooling. In this 
context, the PPAL-CNN model [10] was 
created to identify FDs using probabilistic 
error characteristics. To begin, the filament 
types have been identified using auto-
correlation of fabric visuals to assess the 
repetitive fabric motifs.The motif map was 
then created by regularizing the cross-
correlation. The neuron densities might 
determine the stability of the fabric forms for 
creating the probabilistic rule. This rule was 
employed in CNN as PPAL to connect neurons 
in a motif vicinity to the faulty decision. 
Further, the flaw risk map has been employed 
as the adaptive activation map of a CNN, 
alongside Conditional Random Field (CRF)’s 
pairwise-potential factor, to properly 
recognize constrained motifs and handle 
dysfunctional visuals in CNN training. 
However, instead of being learned, the CRF 
must be given a prior distribution. It was 
difficult to build sophisticated relationships 
across FD tags if there were many or long-
deep relationships.  
To address this issue, an EPPAL-CNN model 
[11] that handles the difficult motif 
relationship of FDs was thus devised. Initially, 
the CRF has been enhanced by the use of 
external memory rules suggested by memory 
channels, allowing CRFs to comprehend 
localized features and analyze the full image. 
It has a memory layer as well as a Dynamic 
CRF (DCRF) layer. The memory layer is divided 
into three sections: inbound, outbound, and 
actual inbound memory. The arriving and 
exiting memories have been specified by an 
attentiveness algorithm which provides 
weights depending on the relevance of the 
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arriving and existing arriving memories. 
Following that, the memory layer's output has 
been passed into the DCRF as input. 
The multivariate design of the DCRF includes 
linkages between cotemporal labels as well as 
the exact creation of restricted risk 
associations between different labels. As a 
result, an external memory has been used to 
build a higher-order Markov association 
across classes. In contrast, gradient-based 
optimization techniques for learning CNN's 
weights exhibit  
 
distinctive convergence behavior, leading to 
ineffective recognition. So, an EPPAL-OCNN 
model was suggested [12], which includes an 
individual weight optimization scheme based 
on NWM-Adam for resolving CNN's 
undesirable convergence. A unique first-order 
gradient descent optimization method is 
provided in this approach, which employs a 
dynamic exponential decay rate for second-
moment approximation rather than a preset 
and fixed one. It can also easily change the 
weighting of prior gradients in the estimation. 
This innovative exponential smoothing 
average version was created motivated by the 
fact that prior gradients were assigned 
additional memory than existing gradients. 
Though it increases the rate of identification, 
it takes more time to create the detective 
model for each defect.  
Also, learning the OCNN structure needs a 
vast amount of labeled samples and the 
acquisition of labeled samples was time-
consuming.Therefore in this paper, an EPPAL-
OMCCNNmodel is proposed to minimize the 
time required to create more labeled samples 
for FDD. In this new model, multi-objective 
active deep learning is applied which 
minimizes the cost of manual labeling to a 
specified range. First, the OCNN structure is 
built depending on some randomly decided 
samples. Then, more influential samples are 
suggested for user’s labeling and updated to 
the learning set to modify the OCNN 
structure. In all epochs, the reliability of 
unlabeled samples is determined under 2 
distinct criteria: labeled samples and the 

present structure. For the initial objective, the 
density and relevance are utilized to 
determine the reliability of unlabeled samples 
which prevents the data redundancies. For 
the second objective, the reliability of 
unlabeled samples is determined based on 
the uncertainty and tag-based factor which 
accelerates the convergence of the OCNN and 
decreases the efficiency variance across 
labels, correspondingly. Thus, this model can 
label the more influential samples 
automatically with the minimum time for 
recognizing and categorizing the FDs. 
The remainder of this paper will be structured 
as follows: Section II covers prior work on FD 
recognition. Section III describes the EPPAL-
OMCCNN model, while Section IV portrays its 
effectiveness. Section V ends with a summary 
and offers potential refinements. 
II. LITERATURE SURVEY 
Zhang et al. [13] developed a new FD 
identification scheme depending on the 
saliency metric for color dissimilarity and 
positional aggregation. In this scheme, the 
RGB color space of a  
 
fabric photo was transformed into the color 
space for defining the features. After that, the 
color dissimilarity and the positional distance 
between identical patches were utilized to 
estimate the faulty ranges. Also, a multi-scale 
analysis method was executed on the pyramid 
images of the input fabric image to enhance 
the contrast between the faulty and non-
faulty areas. But, it was still difficult to identify 
the faults in the motif and box-patterned 
fabric images. 
Wei et al. [14] designed a novel scheme by 
integrating Compressive Sensing and CNN (CS-
CNN) to categorize the FDs. First, the CS was 
used to compress and augment the data in 
small sample dimensions. After, the CNN was 
utilized to categorize the image attributes 
directly from the CS. But, its efficiency was not 
poor while reducing the sampling rate. 
Saleh et al. [15] developed a fully automated 
FD identification using additive wavelet 
transform to improve the energy of the faulty 
area and attenuate the energy of the 
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background in the decided range. The trous 
wavelet was used to extract the approximate 
sub-image at a suitable range. Also, an 
improved thresholding scheme depending on 
statistical determination was applied. 
However, its accuracy was not effective. 
Jing et al. [16] developed a Mobile-Unet to 
partition the FDs by using the median 
frequency balancing error factor which solves 
the data imbalance issue. Also, a depth-wise 
separable convolution was applied to 
minimize the complexity and network 
structure dimension. First, the MobileNetV2 
was utilized as the encoder and 5 
deconvolution layers were included as the 
decoder. Then, the softmax unit was 
employed to create the final partition mask. 
But, it needs more manually annotated 
samples for learning because it was a 
supervised technique. 
Di et al. [17] designed an FD identification 
technique depending on the mixture of 
lighting correction and visual salient features. 
First, a multi-scale window box filter was 
created to mine the lighting element of the 
image. The created 2D gamma correction 
factor was utilized to execute the lighting 
correction on the image at the global angle 
and the local contrast of the image was 
enhanced at the local angle. Also, the L0-
gradient reduction was used to discard the 
background texture of fabric images. Then, 2D 
fractional Fourier transform was applied to 
acquire the saliency map of the quaternion 
image. But, it has a high False Positive Rate 
(FPR) for dot-patterned FDs. 
Liu et al. [18] developed an effective weakly 
supervised shallow network called DLSE-Net 
with Link-SE (L-SE) unit and Dilation Up-
Weight CAM (DUW-CAM) for identifying FDs. 
Initially, the network has a residual link that 
was built as a new branch to remove the 

semantic gap created by the link of various 
layers. Then, the L-SE unit was used to guide 
the weights to be concerned with the entire 
network in global optimization. Moreover, a 
new DUW-CAM with an attention strategy 
was applied to enhance the adaptability of the 
network by suppressing the background and 
enhancing the fault areas. But, it cannot 
identify the small defects accurately. 
Shi et al. [19] designed an FD identification 
technique depending on the low-rank 
decomposition of gradient data and 
structured graph scheme. The structured 
graphics scheme was used to split the FD 
image into a defect-free block with local 
features and defect damage moments. In the 
merging task, an adaptive threshold was 
assigned based on the number of cycles 
contained in the present block to support 
intra lattice merging and avoid the merging of 
defective blocks and neighboring non-
defective blocks. Also, the defect prior data 
computed from the partition outcomes was 
applied to direct matrix decomposition to 
weaken the defect-free area and enhance the 
defect region under the sparse term. On the 
other hand, it has a high difficulty to attain 
sparse outcomes and so its robustness was 
not effective. 
III. PROPOSED METHODOLOGY 
In this section, the EPPAL-OMCCNN model is 
explained in brief. Initially, the training fabric 

samples are represented as𝒟 = {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑁  

where 𝑥𝑖is 𝑖𝑡ℎinput sample in 𝒟 and has a 
string: {𝑥𝑖1, … , 𝑥𝑖𝑇} and 𝑦𝑖  is their related 
labels {𝑦𝑖1, … , 𝑦𝑖𝑇}. During EPPAL-OMCCNN 
learning, all 𝑥𝑡define the temporal 
characteristics in any input sample with their 
related tag 𝑦𝑡. Figure 1 displays the overall 
schematic representation of EPPAL-OMCCNN-
based FD identification model. 
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Figure 1. Block Diagram of Proposed FDs Recognition System 

 
Figure 2 depicts the schematic representation 
of the multi-objective active learning strategy. 
Primarily, the training fabric samples of both 
defective and non-defective are gathered at 
random manner. Then, the PPAL-CNN 
classifier is built using some randomly 
selected samples. So, additional influential 
samples are needed for labeling and then 
included to the learning set to modify this 
classifier. In every step, the importance of the 
unlabeled samples is measured under 2 
situations: i) the labeled samples and ii) the 
current framework. 

For the primary situation, density and 
similarity are utilized to measure the 
importance of unlabeled samples for 
minimizing the data redundancy. For the 
secondary situation, the importance of 
unlabeled samples is determined in 
accordance with the uncertainty and label-
based measure.So, 2 different types of 
samples are created to balance among labels 
and utilized to train the EPPAL-OCNN classifier 
to recognize FDs. 
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Figure 2. Schematic Representation of Multi-Objective Active Learning Scheme 

3.1 Choice of Influential Samples 
For an EPPAL-OCNN structure (𝒮) and the labeled image collection 𝒟𝐿, the choice of influential 
image is intended at providing an influential image collection 𝒟𝐼 from the unlabeled image collection 
𝒟𝑈𝐿. 
The importance of 𝒟𝐼 under the situations 𝒟𝐿 and 𝒮 is defined as 𝑖𝑚𝑝(𝒟𝐼|𝒟𝐿, 𝒮). The influential 
image choice method is intended at recognizing the image collection 𝒟𝐼 from 𝒟𝑈𝐿 to increase the 
rate of 𝑖𝑚𝑝(𝒟𝐼|𝒟𝐿, 𝒮) as: 
argmax

𝒟𝐼

𝑖𝑚𝑝(𝒟𝐼|𝒟𝐿, 𝒮)      (1) 

Consider that 𝒟𝐿 and 𝒮 separately influence the importance of 𝒟𝐼 and Eq. (1) is converted as: 
argmax

𝒟𝐼

𝛼𝑖𝑚𝑝(𝒟𝐼|𝒟𝐿) + (1 − 𝛼)𝑖𝑚𝑝(𝒟𝐼|𝒮)   (2) 

In Eq. (2), 𝛼 denotes the weight to balance the efficiencies of 𝑖𝑚𝑝(𝒟𝐼|𝒟𝐿) and 𝑖𝑚𝑝(𝒟𝐼|𝒮). The 
initial term 𝑖𝑚𝑝(𝒟𝐼|𝒟𝐿) is the importance of 𝒟𝐼 under 𝒟𝐿 and the second term 𝑖𝑚𝑝(𝒟𝐼|𝒮) is the 
importance of 𝒟𝐼 under 𝒮. 
A. Estimation of Importance under Labeled Images 
For 𝒟𝐿, the importance of all images 𝑥𝑖 in 𝒟𝐼 is determined according to the density and similarity. 
Density is the closeness of images. The greater density denotes the irrelevant feature of images and 
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the marginal importance and vice versa. The importance is determined according to the density is 
as: 

𝑖𝑚𝑝𝑑𝑒𝑛(𝑥𝑖|𝒟𝐿) = 1 −
1

|𝒟𝐿
𝑐|

∑ 𝐶𝑜𝑠𝑑(𝑥𝑖, 𝑥𝑗)𝑥𝑗∈𝒟𝐿
𝑐    (3) 

In Eq. (3), 𝑝 refers to the pseudo-label of 𝑥𝑖 by the EPPAL-OCNN framework, 𝒟𝐿
𝑝

 refers to the image 
collection from the label 𝑝 in 𝒟𝐿 and 𝐶𝑜𝑠𝑑(. , . ) denotes the cosine distance factor. The density 
importance is determined by using only the labeled images with a similar label as 𝑥𝑖. Also, the 
similarity is utilized to guarantee the variety of images. This means that 𝑥𝑖 must be varied from 
another image in 𝒟𝐿. So, the importance is determined according to the similarity is as: 

𝑖𝑚𝑝𝑠𝑖𝑚(𝑥𝑖|𝒟𝐿) = 1 − max
𝑥𝑗∈𝒟𝐿

𝑐
𝐶𝑜𝑠𝑑(𝑥𝑖 , 𝑥𝑗)   (4) 

Further, such 2 measures are merged with equivalent weights to determine 𝑖𝑚𝑝(𝑥𝑖|𝒟𝐿)as: 

𝑖𝑚𝑝(𝑥𝑖|𝒟𝐿) =
1

2
𝑖𝑚𝑝𝑑𝑒𝑛(𝑥𝑖|𝒟𝐿) +

1

2
𝑖𝑚𝑝𝑠𝑖𝑚(𝑥𝑖|𝒟𝐿)   (5) 

The importance of each image in 𝒟𝐼 is summed as𝑖𝑚𝑝(𝒟𝐼|𝒟𝐿) and the greater value of 𝑖𝑚𝑝(𝒟𝐼|𝒟𝐿) 
guarantees that the images in 𝒟𝐼 have rich and non-recurring features. 
B. Estimation of Importance under EPPAL-OCNN Model 
For 𝒮, the importance of 𝒟𝐼 is associated with 2 different parameters. The primary parameter is the 
ambiguity measure. The indistinguishable images give indistinct features to speed up the 
convergence of the EPPAL-OCNN framework. The second parameter is the label-based measure 
applied for choosing highly valuable labels and avoiding efficiency discrepancy among labels. Such 2 
parameters are merged as: 
𝑖𝑚𝑝(𝑥𝑖|𝒮) = 𝛽𝑖𝑚𝑝𝑎𝑚𝑏(𝑥𝑖|𝒮) + (1 − 𝛽)𝑖𝑚𝑝𝑙𝑎𝑏(𝑥𝑖|𝒮)  (6) 
In Eq. (6), 𝛽 refers to the weight to stabilize these 2 parameters. The importance of every image in 
𝒟𝐼 is summed as: 

𝑖𝑚𝑝(𝒟𝐼|𝒮) = ∑ 𝑖𝑚𝑝(𝑥𝑖|𝒮)𝑁
𝑖=1      (7) 

To determine the ambiguity, a modified margin sampling scheme is adopted. Consider 𝑃(𝐶𝑚|𝑥𝑖 , 𝒮) is 
the posterior possibility of the unlabeled image 𝑥𝑖 belonging to the class 𝐶𝑚 under 𝒮 
and𝑖𝑚𝑝𝑎𝑚𝑏(𝑥𝑖|𝒮) is determined as: 

𝑀𝑒𝑎𝑛𝐾(𝑥𝑖|𝒮) =
1

𝐾
∑ 𝑃(𝐶𝑚|𝑥𝑖, 𝒮)𝐾

𝑚=1      (8) 

𝑖𝑚𝑝𝑎𝑚𝑏(𝑥𝑖|𝒮) = 1 −
1

𝐾
∑ |𝑃(𝐶𝑚|𝑥𝑖, 𝒮) − 𝑀𝑒𝑎𝑛𝐾(𝑥𝑖|𝒮)|𝐾

𝑚=1  (9) 

In Eqns. (8) & (9), 𝐶𝑚 denotes the label of 𝑚𝑡ℎ possible class, 𝐾 refers to the top 𝐾 possible classes 
and 𝑀𝑒𝑎𝑛𝐾(𝑥𝑖|𝒮) defines the average value of the top 𝐾 chances. The range of 𝐾 is determined 

while the total of the top 𝐾 chances is slightly over 
1

2
 in the testing. Also, the label-based measure is 

used to decide 2 categories of images. The initial category is the images from the classes that reveal 
quick efficiency enhancement. Such images reveal the possibility to speed up the efficiency 
enhancement of the EPPAL-OCNN structure. 
The second category is the images from the classes that show poor efficiency. Such images are 
employed to get an efficiency tradeoff among classes. Consider 𝐴𝑐𝑐𝑡

𝑐 is the classification accurate of 

𝑐𝑡ℎ class by 𝒮 in epoch 𝑡 on the test images. After that, a weight is assigned to 𝑐𝑡ℎ class as: 

𝑊𝑡
𝑐 = {

𝑚𝑎𝑥 (0,
(𝐴𝑐𝑐𝑡

𝑐−𝐴𝑐𝑐𝑡−1
𝑐 )

𝑍1
) , min 𝐴𝑐𝑐𝑡

𝑐 < 𝑡ℎ

1 𝐴𝑐𝑐𝑡
𝑐⁄

𝑍2
, min 𝐴𝑐𝑐𝑡

𝑐 ≥ 𝑡ℎ
   (10) 

In Eq. (10), 𝑍1 and 𝑍2 are regularization variables and 𝑡ℎ is a threshold. This model focuses on the 
images from the classes that enclosethe best efficiency improvement. The efficiency improvement 

of all classes is analyzed by the efficiency variance between 𝑡𝑡ℎ and (𝑡 − 1)𝑡ℎepochs on the testing 
images. Since the efficiency prolongs to enhance, this model provides images from the classes with 
poor efficiency to tradeoff the efficiency amid classes. 
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For an unlabeled image 𝑥𝑖 in 𝑡, its most analogous image 𝑥𝑎 is determined on visual space in 𝒟𝐿 and 
then the label 𝑎 of 𝑥𝑎 is set to 𝑥𝑖 as its pseudo-label. Moreover, the value of 𝑖𝑚𝑝𝑙𝑎𝑏(𝑥𝑖|𝒮) is 
equivalent to 𝑊𝑡

𝑎. 
C. Parameter fine-tuning 
In this model, the value of 𝛼 and 𝛽 in Eqns. (2) & (6) are adaptively fine-tuned. At the starting of 
learning, the EPPAL-OCNN framework shows a poor efficiency and its estimated chance is not 
reliable. So, the metrics are considered depending on the labeled images such as similarity and 
density. As a result, an incredibly high range is assigned for 𝛼 in the primary step. Since the learning 
continues, the efficiency of the EPPAL-OCNN keeps on enhancing and the chance estimated by the 
EPPAL-OCNN turns into realistic. Similarly, the impact of similarity and density initiates to moderate. 
So, the range of 𝛼 is decreased regularly as: 

𝛼 = 𝛼𝑝𝑟𝑖𝑒−𝐴𝑐𝑐𝑡        (11) 

In Eq. (11), 𝛼𝑝𝑟𝑖  denotes the primary value and 𝐴𝑐𝑐𝑡 refers to the mean classification accuracy with 

the test set in 𝑡𝑡ℎ epoch. Similarly, the variable 𝛽 is utilized to normalize the level of importance 
between the ambiguity and the label-based measure. In the early epochs of learning, assume that 𝒮 
does not able to perfectly predict labels; thus, the label-based measure is termed unreliable. 
Accordingly, this presented model highly concentrates on the ambiguity via allocating the great 
range to 𝛽 to speed up the convergence. Since the accuracy enhances and the convergence rate 
reduces, the credibility of the label is analyzed. So, the range of 𝛽 is decreased slowly as: 

𝛽 = 𝛽𝑝𝑟𝑖𝑒
−𝐴𝑐𝑐𝑡       (12) 

In Eq. (11), 𝛽𝑝𝑟𝑖 denotes the primary value. Thus, the efficiency of FD recognition is enhanced 

successfully by alleviating the class imbalance challenge. 
Algorithm: 

Input: Training dataset 𝒟 = {𝑥𝑖, 𝑦𝑖}𝑖=1
𝑁  

Output: Defective fiber samples and non-defective fiber samples 
Begin 
Initialize the labeled image collection 𝒟𝐿

𝑡, unlabeled image collection 𝒟𝑈𝐿
𝑡 , primary collection 

dimension 𝑁𝑝𝑟𝑖, the maximum epoch 𝑇, the number of chosen images in all epochs 𝑁 and the 

primary range of variables 𝛼𝑝𝑟𝑖, 𝛽𝑝𝑟𝑖; 

𝒟𝑈𝐿
0 = 𝒟, 𝒟𝐿

0 = {}; 

Choose 𝑁𝑝𝑟𝑖  images from 𝒟𝑈𝐿
0  at random manner and include them to 𝒟𝐼; 

𝒟𝑈𝐿
1 = 𝒟𝑈𝐿

0 − 𝒟𝐼, 𝒟𝐿
1 = 𝒟𝐿

0 + 𝒟𝐼, 𝒟𝐼 = {}; 

Learn the EPPAL-OCNN 𝒮1 by utilizing 𝒟𝐿
1; 

Determine 𝛼 and 𝛽 using Eqns. (11) & (12); 
𝒇𝒐𝒓(𝑡 = 1: 𝑇) 
 𝒇𝒐𝒓(𝑒𝑣𝑒𝑟𝑦 𝑖𝑚𝑎𝑔𝑒 𝑥𝑖 𝑖𝑛 𝒟𝑈𝐿

𝑡 ) 
  Compute 𝑖𝑚𝑝(𝑥𝑖|𝒟𝐿

𝑡) using Eq. (5) and𝑖𝑚𝑝𝑎𝑚𝑏(𝑥𝑖|𝒮𝑡) using Eq. (9); 
  Compute 𝑖𝑚𝑝𝑙𝑎𝑏(𝑥𝑖|𝒮𝑡) = 𝑊𝑡

𝑎; 
  Compute 𝑖𝑚𝑝(𝑥𝑖|𝒮𝑡) using Eq. (6) and the importance value for 𝑥𝑖 as: 

𝑖𝑚𝑝(𝑥𝑖|𝒮𝑡 , 𝒟𝐿
𝑡) = 𝛼𝑖𝑚𝑝(𝑥𝑖|𝒟𝐿) + (1 − 𝛼)𝑖𝑚𝑝(𝑥𝑖|𝒮) 

 𝒆𝒏𝒅 𝒇𝒐𝒓 
 Include the top 𝑁 unlabeled images {𝑥𝑖}𝑖=1

𝑁 with the highest importance to 𝒟𝐼; 

 𝒟𝑈𝐿
𝑡+1 = 𝒟𝑈𝐿

𝑡 − 𝒟𝐼, 𝒟𝐿
𝑡+1 = 𝒟𝐿

𝑡 + 𝒟𝐼, 𝒟𝐼 = {}; 

 Learning the classifier 𝒮𝑡+1 depending on 𝒟𝐿
𝑡+1; 

 Fine-tune the variables 𝛼 and 𝛽 using Eqns. (11) & (12); 
𝒆𝒏𝒅 𝒇𝒐𝒓 
Apply the test image samples to recognize the defective and non-defective image samples; 
Validate the classifier performance; 
End 
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IV. EXPERIMENTAL RESULTS 
In this part, the efficiency of EPPAL-OMCCNN 
is analyzed by implementing it in MATLAB 
2017b and compared with the existing 
models. The considered existing models are 
EPPAL-OCNN [12], EPPAL-CNN [11], CS-CNN 
[14] and Mobile-Unet [16]. In this analysis, 
The Irish Longitudinal Study on Ageing (TILDA) 
image corpus [20] is considered which 
includes 7 labels of fibers with flaws and 1 
label of fibers without flaws. As a 

consequence, a complete corpus contains 
3200 TIF visuals totaling 1.2GB in size. Each 
image in the TILDA collection contains a full 
description of the image's flaws. Amongst, 
2100 images are used for learning and 1100 
visuals are used for testing. The analysis is 
focused on different metrics associated with 
the identification.Table 1 presents the 
confusion matrix for all classes is 
obtainedindependently and a mean of 
recognized results for EPPAL-OMCCNN. 

Table 1.Confusion Matrix for EPPAL-OMCCNN using 1100 Test Images 

 Recognized Class 

 
 
Actual Class 

 Positive Negative 

Positive (550 for each 
class) 

True Positive 
530 

False Negative 
20 

Negative(550 for other 
class) 

False Positive 
21 

True Negative 
529 

 
4.1 Accuracy 
It is the proportion of properly recognized defective and non-defective fiber samples. 

𝐴𝑐𝑐 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑇𝑁)

𝑇𝑃+𝑇𝑁+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝐹𝑁)
× 100%  

TP defines the quantity of defective fiber samples properly recognized as defective, TN defines the 
quantity of non-defective fiber samples perfectly recognized as non-defective. Also, FP defines the 
quantity of defective fiber samples improperly recognized as non-defective and FN defines the 
quantity of non-defective fiber samples improperly recognized as defective. 

 
Figure 2. Comparison of Accuracy 

Figure 2 demonstrates the accuracy (in %) 
achieved by the EPPAL-OMCCNN, EPPAL-
OCNN, EPPAL-CNN,CS-CNN and Mobile-Unet 
models. It analyzes that the accuracy of 
EPPAL-OMCCNN is 6.28% higher than the 
Mobile-Unet, 4.48% higher than the CS-CNN, 

3.12% higher than the EPPAL-CNN and 1.72% 
higher than the EPPAL-OCNN models because 
of alleviating the class imbalance problem 
during learning. Thus, this EPPAL-OMCCNN 
can maximize the accuracy of recognizing the 
FDs compared to the other models. 

4.2 Precision 
It is the proportion of recognized actual defective fiber samples. 
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𝑃𝑟𝑒

=
𝑁𝑜. 𝑜𝑓 𝑝𝑟𝑜𝑝𝑒𝑟𝑙𝑦 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑖𝑏𝑒𝑟𝑠

𝑁𝑜. 𝑜𝑓 𝑝𝑟𝑜𝑝𝑒𝑟𝑙𝑦 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑖𝑏𝑒𝑟𝑠 + 𝑁𝑜. 𝑜𝑓 𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑙𝑦 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑖𝑏𝑒𝑟𝑠
 

 
Figure 3. Comparison of Precision 

Figure 3portrays the precision (in %) obtained 
by the EPPAL-OMCCNN, EPPAL-OCNN, EPPAL-
CNN, CS-CNN and Mobile-Unet models. It 
indicates that the precision of EPPAL-
OMCCNN is 6.25% greater than the Mobile-
Unet, 4.39% greater than the CS-CNN, 2.95% 

greater than the EPPAL-CNN and 1.72% 
greater than the EPPAL-OCNN models. So, this 
EPPAL-OMCCNN increases the precision of 
identifying the FD by solving the class 
imbalance problem. 

4.3 Recall 
It is the proportion of defective fiber visuals properly recognized as faulty. 

𝑅𝑐

=
𝑁𝑜. 𝑜𝑓 𝑝𝑟𝑜𝑝𝑒𝑟𝑙𝑦 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑖𝑏𝑒𝑟𝑠

𝑁𝑜. 𝑜𝑓 𝑝𝑟𝑜𝑝𝑒𝑟𝑙𝑦 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑖𝑏𝑒𝑟𝑠 + 𝑁𝑜. 𝑜𝑓 𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑙𝑦 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑛𝑜𝑛 − 𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑖𝑏𝑒𝑟𝑠
 

 
Figure 4. Comparison of Recall 

Figure 4 displays the recall (in %) obtained by 
the EPPAL-OMCCNN, EPPAL-OCNN, EPPAL-
CNN, CS-CNN and Mobile-Unet models. It 
indicates that the recall of EPPAL-OMCCNN is 
6.3% greater than the Mobile-Unet, 4.3% 
greater than the CS-CNN, 2.6% greater than 

the EPPAL-CNN and 1.7% greater than the 
EPPAL-OCNN models. So, this EPPAL-OMCCNN 
increases the recall of identifying the FD by 
integrating the multi-objective active learning 
to alleviate the class imbalance problem. 
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4.4 F-measure 
It is the harmonic average of 𝑃𝑟 and 𝑅𝑐. 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑃𝑟∙𝑅𝑐

𝑃𝑟+𝑅𝑐
  

 
Figure 5. Comparison of F-measure 

Figure 5 illustrates the f-measure (in %) 
obtained by the EPPAL-OMCCNN, EPPAL-
OCNN, EPPAL-CNN, CS-CNN and Mobile-Unet 
models. It addresses that the f-measure of 
EPPAL-OMCCNN is 6.3% greater than the 
Mobile-Unet, 4.4% greater than the CS-CNN, 
2.8% greater than the EPPAL-CNN and 1.7% 
greater than the EPPAL-OCNN models. So, this 
EPPAL-OMCCNN increases the f-measure 
compared to all other models to recognize the 
FD effectively by balancing the efficiency 
among classes. 
V. CONCLUSION 
This study presented an EPPAL-OMCCNN 
model which employs the multi-objective 
active learning to reduce the labeling cost and 
solve the class imbalance problem during 
training. At first, the EPPAL-OCNN 
architecture was built with the help of limited 
training images. Then, the multi-objective 
active learning was performed to label more 
influential images and alter the EPPAL-OCNN 
classifier for FD recognition. At last, the 
testing outcomes using TILDA database 
proved that the EPPAL-OMCCNN has realized 
96.27% accuracy which was 3.87% larger than 
all other models compared to the classical 
models.However, it should adapt to predict 
historical and new classes of defect patterns. 
So, the future work will focus on using 
reinforcement learning to train and predict 
any classes of FD patterns effects. 
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