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1. INTRODUCTION 

In fixed point theory, the Banach contraction 

principle is the remarkable result that was 

introduced by Banach [4] in 1922. Over the years, 

this theory was generalized by various 

researchers on different metric spaces. And they 

used the contraction principle for references to 

their theorems. Quasi-partial metric space was 

introduced by Karapinar et. al. in 2012. He 

proved the existence of a fixed point for self-

mapping in quasi-partial metric space. By a 

generalization of the Banach contraction principle 

on a complete metric space, Ciric [5] (2011) proved 

the fixed-point theorem. 

In 2012, Agarwal et al. [2] and Aydi et al. (2011) 

[1] obtained the fixed-point theorems and 

applications to nonlinear integral equations, 

Coupled fixed point results in cone metric spaces 

for w-compatible mappings. Akewe, H. and      

Olaoluwa, H., [3] (2020) established multistep-

type construction of fixed points for multivalued-

quasi-contractive maps in modular function 

spaces. Caristi [6] (1976) satisfied inwardness 

conditions and proved fixed point theorems for 

mappings. Ciric et al. [7, 8] (2010, 2011) 

introduced the Banach fixed point principle for 

nonlinear contractions in probabilistic metric 

spaces and generalized contractive mappings in 

ordered metric spaces. Cvetkovic c et al.   

[9](2011) generalized common fixed-point 

theorems for four mappings on cone metric type. 

Deepankar Dey et al. [10] (2021) obtained 

uniformity on generalized topological spaces. 

In 2012, Hussain, N. et al. [11] established Suzuki-

type fixed point results in metric type spaces. 

Jungck et al. [12, 13] (2006, 2009) presented 

fixed point theorems for occasionally weakly and 
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weakly compatible mappings. R. Kannan [14] 

(1969) proved some results on fixed points. 

Okeke and Francis [15, 16] (2020, 2021) obtained 

some fixed-point theorems for a general class of 

mappings and Geraghty-type mappings applied to 

solving nonlinear Volterra-Fredholm integral 

equations in modular G-metric spaces. Parvaneh 

et al. [17] (2013), as an application presented to 

a system of integral equations. In 2001, T. Suzuki 

[18] was generalized distance and existence 

theorems in complete metric spaces. Ume S. [19] 

(2008) established extensions of minimization 

theorems and fixed point theorems on a quasi-

metric space, he also proved existence theorems 

for generalized distance on complete metric 

spaces [20] (2010). Again in (2011) and (2013), 

he obtained fixed-point theorems for nonlinear 

contractions in Menger spaces [21] as well as 

Common fixed-point theorems for nonlinear 

contractions in a Menger space [22]. Again, Ume 

S. [23] (2015) proved fixed point theorems for 

ciric type mapping and application to integral 

equations.

 
Let Y  : S → S be a quasi-contractive mapping and Y    be a complete metric space. Then ∃ b ∈ [0, 1] in 
such a way that, every s1, t1 ∈ S 
                  
 d(Y s1, Y t1) ≤ b.max {d (s1, t1), d (s1, Y s1), d (t1, Y t1)}. 
Which holds w ∈ S is a unique fixed point of Y. 
limm+1→∞ Y  m+1s1 = w ∀ s1 ∈ S. 

d(Y  m+1s1, w) ≤[
𝑏𝑚+1

1−𝑏
]
 
d(s1, Y  s1) for s1 ∈ S. 

 
2. PRELIMINARIES 

Now, we take a look at a few lemmas and definitions that are pertinent to our primary findings. We 

denote qp= quasi partial metric space, N= natural quantity, R and R+= all real and positive quantities. 

Definition 2.1: [19]  

 A function qp : S × S → R+ satisfying the condition 

(i) 0 ≤ qp(s1, s1) = qp(t1, t1) = qp(s1, t1) ⇐⇒ s1 = t1 

(ii) qp(s1, s1) ≤ qp(t1, s1) 

(iii) qp(s1, s1) ≤ qp(s1, t1) 

(iv) qp(s1, u) + qp(t1, t1) ≤ qp(s1, t1) + qp(t1, u) for all s1, t1, u ∈ V 

Then (S, qp) known as quasi-partial metric space (QPMS) in such a way that S is a non-void set 

 

Definition 2.2: [23]  

Let (S, d), p∗ are metric space and u- distance on S. Thus, a sequence {sm} ∈ S known as p∗ Cauchy if ∃ a 

function ϕ :S × S × R+ × R+ → R+ which satisfies all the conditions of u-distance except first, and there 

exist a sequence { 𝔷 m } ∈ S such that 
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limm→∞sup{ϕ(𝔷 m, 𝔷 m, p∗( 𝔷 m, 𝑠𝑛
1), p∗( 𝔷 m , 𝑠𝑛

1)) : n ≥ m} = 0  or 

limm→∞sup{ϕ(𝔷 m, 𝔷 m, p∗( 𝑠𝑛
1, 𝔷 m), p∗( 𝑠𝑛

1, 𝔷 m)) : n ≥ m} = 0. 

 

Lemma 2.3: [23] 

Suppose a quasi-partial metric space (S, qp) and a u-distance on S are on S be p∗. Let 

{𝑠𝑛
1} of S which satisfy 

limm→∞sup{ P∗(𝑠𝑚
1 , 𝑠𝑛

1)) : n ≥ m} = 0  or 

limm→∞sup{ P∗(𝑠𝑛
1, 𝑠𝑚

1 ) : n ≥ m} = 0 then 

(i) It's a p∗ Cauchy sequence.  

(ii) {𝑠𝑚
1 } be a Cauchy sequence if it's a p∗ Cauchy sequence. 

 

Lemma 2.4: [23] 

Let a metric space is (S, d) and a u-distance p* on S. 

(i)Whether two sequences {𝑠𝑚
1 } together with {𝑡𝑚

1 } satisfied 

limm⟶∞p*( 𝔷,  𝑠𝑚
1 )=0 and limm⟶∞p*( 𝔷,  𝑡𝑚

1 )=0. And 

limm⟶∞p*(𝑠𝑚
1 , 𝔷) =0 and limm⟶∞p*( 𝑡𝑚

1 , 𝔷) = 0 for few 𝔷 ∈ S, then 

limm⟶∞p*(𝑠𝑚
1 , 𝑡𝑚

1 ) = 0. 

(ii) s1= t1,if p*( 𝔷,  s1)=0= p*( 𝔷,  t1) as well as p*( s1, 𝔷)=0= p*( t1, 𝔷) 

 

Lemma 2.5: [23] 

 Suppose a partial quasi metric space be (S, qp) and a u-distance on S be p∗. {am} and {bm}be 

 two sequences of S in such a way that 

limm→∞sup{ p∗ (am, an)) : n ≥ m} = 0 

along with limm→∞sup{ p∗ (an, am): n ≥ m} = 0 

Then ∃ two sub sequences {𝑎𝑘𝑚
} of {am} and {𝑏𝑘𝑚

} of {bm} such that 

limm→∞qp({𝑎𝑘𝑚   , bkm ) = 0. 

 

 Lemma 2.6:[23] 

   Let (S, 𝑞𝑃) and p∗ are a quasi-partial metric space and a u- distance on S. There are two mappings Y: S 

→ S including ϕ: R+ → R+ satisfy the conditions: 

(a) p∗( Y s1, Y t1) = ϕ(max{p∗(s1, t1), p∗(s1, Y s1), p∗(t1, Y t1), 
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                              p∗ (t1, s1), p∗(Y s1, s1), p∗( Y t1, t1)} ∀ s1, t1 ∈ S                                                         (2.1) 

(b) A increasing function is ϕ such that ϕn(t1) < (b) t1 > 0; 

(c ) A increasing as well as bijective function is I-ϕ and I is identity mapping on R+. 

(d) ∑ 𝜙∞
𝑚=1

m(t1) < ∞ for every   t1∈(0, ∞), 

 𝜙 n = n times 𝜙 composition was repeated with itself. 

Then (i) for s1, t1 ∈ S and n, j, i ∈ N 

d(Y s1, Y t1) ≤ b (max {d(s1, t1), d(s1, Y s1), d(t1, Y t1)} 

max{p∗ (Y  js1, Y  is1), p∗(Y  js1, Y  it1), p∗(Y  jt1, Y  is1), 

p∗ (Y  jt1, Y   it1)} ≤ ϕ(ζ(O(s1, t1, n))  where j, i ≤  

(ii) For s1, t1 ∈ S, ζ (O (s1, t1, ∞) ≤ (1 – ϕ )−1 [a(s1, t1)], 

where a(s1, t1) = p∗(s1, s1) + p∗(t1, t1) + p∗(s1, t1) + p∗(t1, s1) + p∗(s1, Y  s1) + p∗( Y s1, s1) + p∗(t1 Y  t1) 

+ p∗( Y t1, t1) 

(iii)For each s1 ∈ S, {Y m+1s1} a Cauchy sequence. 

(iv) Every s1, t1 belongs to S and n belongs to N, 

p∗( Y m+1s1, Y m+1t1) ≤ ϕm(1 − ϕ)−1(a(s1, t1)) 

For each s1, t1 ∈ S, limm+1→∞p∗( Y m+1s1, Y m+1t1) = 0                                                           (2.2) 

 

3. 3.U-DISTANCE 

The notion of u-distance introduced by Ume [23] in 2010 by generalizing of τ distance. Which is as 

follows: 

Let (X, d) be a metric space. A function p∗: S × S → R+ is known as a u- distance on S If ∃ a function ϕ : S × 

S × R+ × R+ → R+ then the following condition holds for s1, t1, 𝔷 ∈ S 

(u1) p∗ (s1, 𝔷) ≤ p∗ (s1, t1) + p∗(t1, 𝔷); 

(u2) For each s1, t1 ∈ R+ and for any s1 ∈ S, ϵ > 0, ϕ (s1, t1, 0, 0) = 0 and ϕ (s1, t1, x, y) ≥ min (x, y), 

then ∃ δ > 0 such that |x − x0| < δ; and │y-yo│< δ x, where xo, y, yo ∈ R+ 

 And s1 ∈ S which shows│ ϕ (s1, t1, x, y) – ϕ (s1, t1, 0, 0) │ < ε; 

(u3)   limm⟶∞𝑠𝑚
1 =s1 and limm+1→∞ sup {ϕ (wm, 𝔷m, p* (wm, 𝑠𝑛

1 ), p* (𝔷m, 𝑠𝑛
1 )):n ≥ m} 

Which shows p*(t1, s1) ≤ limm⟶∞inf p*(t1, 𝑠𝑚
1 ) ∀ t1∈ S; 

(u4) )  limm→∞ sup { p* (𝑠𝑚
1  ,wn) :n≥m }=0, limm→∞ sup { p* (𝑡𝑚

1 , 𝔷n) :n≥m }=0, 

limm→∞ ϕ { (𝑠𝑚
1  ,wm, xm, ym) }=0, limm→∞ ϕ { (𝑡𝑚

1  ,wm, xm, ym) }=0, 

Which implies that limm→∞ ϕ(wm,𝔷m, 𝑠𝑚
1 , ym) =0 

m 
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(u5)  limm→∞ sup { ϕ (wm, 𝔷m ,p* (wm, 𝑠𝑛
1 ), p* (𝔷m, 𝑠𝑛

1 )}=0,  

limm→∞ sup { ϕ (wm, 𝔷m ,p* (wm, 𝑡𝑛
1 ), p* (𝔷m, 𝑡 𝑛

1  )}=0 

Which shows that   limm→∞ d (𝑠𝑚
1 , 𝑡𝑚

1  )=0 or  

limm→∞{ ϕ (em, fm ,p* (𝑠𝑚
1 , em), p* (𝑠𝑚

1 , fm)}=0,   limm→∞{ ϕ (em, fm ,p* (𝑡𝑚
1 , em), p* (𝑡𝑚

1 , fm)}=0 

Imply limm→∞ d (𝑠𝑚
1 , 𝑡𝑚

1  )=0 . 

 

Example 3.1[23] 

Let the usual metric be S = R. Then p∗: S×S⟶R+; where. Then a u-distance on S is which is p∗, which is 

not a τ distance. 

 

Example 3.2[23]  

Let S be a normed space. Then p∗: S × S → R+ defined by p∗ (s1, t1) = ||s1|| for each s1, t1 ∈ S. Then a u-

distance on S is p∗ which is not a distance known as τ distance. 

 

4. MAIN RESULT OF FIXED POINT FOR Ψ GENERALIZED SINGLE-VALUED AND P- CONTRACTIVE CIRIC 

TYPE MAPPING 

Here we present the main theorems which are proved by generalizing and improving the conditions given by 

Ume, JS. (2015) in the frame of quasi-partial-metric space. 

 

Theorem 4.1: Suppose there is any complete quasi partial metric space and u-distance be (S, qp) and p∗. 

Let a Ciric type mapping is Y  :S → S, 

Which is ψ generalized single-valued and p-contractive, satisfies the conditions (b), (c), and (d) of Lemma 

2.6, Then 

(i) limm+1→∞ Y m+1s1 = z for each s1 ∈ S. 

(ii)p* (Y m+1 s1, 𝔷) ≤ ∑ 𝜙𝑛+1
𝑘=𝑚  k+1((1 − ϕ)-1(a (s1)) ∀ s1 ∈ S                              

Where a(s 1) = [4p (s1, s1) + 2p*(s1, Y s1) + 2p* (Y s1, s1)                                   

(iii)In S, 𝔷 is a unique fixed point of Y, and p∗( 𝔷, 𝔷) = 0. 

Proof: 

Proof (i): Let s1, t1 ∈ S and 𝑠𝑚+1
1 = Y m+1s1 and 𝑡𝑚+1

1 = Y m+1t1    ∀ m + 1 ∈ N 
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then we have to prove, { 𝑠𝑚+1
1 } is a Cauchy sequence. 

Let s1 ∈ S be an arbitrary point and define 𝑠𝑚+1
1 = Y m+1s1 for every m+1 ∈ N 

By the hypothesis of equation (2.1) and (b) of Lemma 3.3, we have 

p*(𝑠𝑚+1
1 , 𝑠𝑚+2

1 )= p*( Y  𝑠𝑚
1  , Y  𝑠𝑚+1

1  ) 

≤ ϕ (max {p*( 𝑠𝑚
1  , 𝑠𝑚+1

1 ), p*( 𝑠𝑚
1  , 𝑠𝑚+1

1 ), p*( 𝑠𝑚+1
1  , 𝑠𝑚+2

1 ),  

   p*( 𝑠𝑚+1
1  , 𝑠𝑚

1 ), p*( 𝑠𝑚+1
1  , 𝑠𝑚

1 ), p*( 𝑠𝑚+2
1 𝑠𝑚+1

1 )}),                                                           (4.1) 

Similarly ,  p*(𝑠𝑚+2
1 , 𝑠𝑚+1

1 )= p*(Y  𝑠𝑚+1
1 , Y  𝑠𝑚

1 ) 

≤ ϕ (max {p*( 𝑠𝑚+1
1  , 𝑠𝑚

1 ), p*( 𝑠𝑚+1
1  , 𝑠𝑚+2

1 ), p*( 𝑠𝑚
1  , 𝑠𝑚+1

1 ), 

   p*( 𝑠𝑚
1  , 𝑠𝑚+1

1 ), p*( 𝑠𝑚+2
1  , 𝑠𝑚+1

1 ), p*( 𝑠𝑚+1
1  , 𝑠𝑚

1 )}),                                             (4.2)   

And   

p*(𝑠𝑚
1 , 𝑠𝑚+1

1 )= p*(Y  𝑠𝑚−1
1  , Y  𝑠𝑚

1  ) 

≤ϕ (max {p*( 𝑠𝑚−1
1  , 𝑠𝑚

1 ), p*( 𝑠𝑚−1
1  , 𝑠𝑚

1 ), p*( 𝑠𝑚
1  , 𝑠𝑚+1

1 ), p*( 𝑠𝑚
1  , 𝑠𝑚−1

1 ),  

p*( 𝑠𝑚
1  , 𝑠𝑚−1

1 ), p*( 𝑠𝑚+1 ,
1 𝑠𝑚

1 )}),                                                                              (4.3) 

 

And   p*( 𝑠𝑚+1
1 , 𝑠𝑚

1 ) = p*(Y  𝑠𝑚
1  , Y  𝑠𝑚−1

1  ) 

≤ ϕ(max {p*( 𝑠𝑚
1  , 𝑠𝑚−1

1 ), p*( 𝑠𝑚
1  , 𝑠𝑚+1

1 ), p*( 𝑠𝑚−1
1  , 𝑠𝑚

1 ), p*( 𝑠𝑚−1
1  , 𝑠𝑚

1 ), 

p*( 𝑠𝑚+1
1  , 𝑠𝑚

1 ), p*( 𝑠𝑚
1  , 𝑠𝑚−1

1 )}),                                                                                                                                (4.4) 

And    p*(𝑠𝑚
1 , 𝑠𝑚+2

1 )= p*(Y  𝑠𝑚−1
1  , Y  𝑠𝑚+1

1  ) 

≤ ϕ (max {p*( 𝑠𝑚−1
1  , 𝑠𝑚+1

1 ), p*( 𝑠𝑚−1
1  , 𝑠𝑚

1 ), p*( 𝑠𝑚+1
1  , 𝑠𝑚+2

1 ), 

p*( 𝑠𝑚+1
1  , 𝑠𝑚−1

1 ), p*( 𝑠𝑚
1  , 𝑠𝑚−1

1 ), p*( 𝑠𝑚+2
1  , 𝑠𝑚+1

1 )}),                                                                                             (4.5) 

 

And    p*(𝑠𝑚+2
1 , 𝑠𝑚

1 )= p*(Y  𝑠𝑚+1
1  , Y  𝑠𝑚−1

1  ) 

≤ ϕ (max {p*( 𝑠𝑚+1
1  , 𝑠𝑚−1

1 ), p*( 𝑠𝑚+1
1  , 𝑠𝑚+2

1 ), p*( 𝑠𝑚−1
1  , 𝑠𝑚

1 ), 

p*( 𝑠𝑚−1
1  , 𝑠𝑚+1

1 ), p*( 𝑠𝑚+2
1  , 𝑠𝑚+1

1 ), p*( 𝑠𝑚
1  , 𝑠𝑚−1

1 )}),                                                                                            (4.6) 

≤ ϕ (max {p*( 𝑠𝑚
1  , 𝑠𝑚

1 ), p*( 𝑠𝑚
1  , 𝑠𝑚+1

1 ), p*( 𝑠𝑚
1  , 𝑠𝑚+1

1 )})                                                                                       (4.7) 

 

Substitute the value of (2) - (7) in (1) and by hypotheses (a), (b), and (c) of Lemma 2.6, we have  

p*(𝑠𝑚+1
1 , 𝑠𝑚+2

1 ) ≤ ϕ (max {p*(  𝑠𝑗
1 , 𝑠𝑖

1 ) : m ≤ j, i ≤ m + 2})   ≤ ϕ2 (max {p*(  𝑠𝑗
1 , 𝑠𝑖

1 ) : m-1 ≤ j, i ≤ m + 2}) 

Proceeding in this manner 

≤ ϕm (max {p*( 𝑠𝑗
1 , 𝑠𝑖

1 ) : 1 ≤ j, i ≤ m + 2}) 

≤ ϕm (ζ (O (s1, s1, ∞)) 
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≤ ϕm ((1-ϕ)-1 a (s1))                                       (4.8) 

 Where (a(s1)) = 4p*(s1, s1) + 2[p*(s1, Y  s1) + p*( Y s1 ,  s1 )] 

Now if m + 1 < n + 1, then by (8) 

p*( 𝑠𝑚+1
1  , 𝑠𝑛+1

1 ) ≤ p*( 𝑠𝑚+1
1  , 𝑠𝑚+2

1 )+ p*( 𝑠𝑚+2
1  , 𝑠𝑚+3

1 )+…………..+ p*( 𝑠𝑛
1 , 𝑠𝑛+1

1 ) 

=∑  𝑝 ∗ ( 𝑠𝑘+1
1  , 𝑠𝑘+2

1 )
𝑛−1

𝑘=𝑚
 

≤ ∑  𝑛−1
𝑘=𝑚  ϕk ((1 – ϕ)-1   a(s1  )) 

 So p*( 𝑠𝑚+1
1  , 𝑠𝑛+1

1 )  ≤ ∑  𝑛−1
𝑘=𝑚  ϕk +1((1 – ϕ)-1   a (s1 ))                                                                                          (4.9) 

By (d) of Lemma 2.6 and (4.9), 

We get limm⟶∞sup {p* ( 𝑠𝑚+1
1  , 𝑠𝑛+1

1 )) : n+1 ≥ m+1} =0                                                                                    (4.10)     

 

By Lemma 2.4 and (4.10),   

 𝑠𝑚+1
1   is a Cauchy Sequence, { Y m+1 s1} is a Cauchy Sequence. 

So S is complete and  𝑠𝑚+1
1  converges to some 𝔷 ∈ S. 

Proof (ii): 

Due to equation (9), (d) of Lemma 2.6, Lemma 2.4, Definition 2.2, and (u3), we have  

p*( 𝑠𝑚+1
1  , 𝔷)  ≤ 𝑙𝑖𝑚

𝑛→∞
𝑖𝑛𝑓 𝑝∗ ( 𝑠𝑚+1

1  , 𝑠𝑛+1
1 ) ≤ ∑  𝑛−1

𝑘=𝑚  ϕk +1((1 – ϕ)-1   a (s1)) 

Which proves (ii) part of theorem. 

 

Proof (iii): 

Since Y   has a unique fixed-point w ∈ S and (iv) of Lemma 2.6 such that 

limm+1→∞ Y  m+1 t= Y   𝔷                                  (4.11)  

from equation (2.2) and (4.8) 

limm+1→∞ sup {sup [p* (Y   m+1 s1, Y   n+1 t1): n + 1 > m + 1]} 

≤ limm+1→∞ sup {sup [p* (Y   m+1 s1, Y   n+1 s1) + p* (Y   n+1   s1, Y   n+1 t1): n + 1 > m + 1]} 

≤ limm+1→∞ sup {sup [p* (Y   m+1 s1, Y   n+1 s1) : n + 1 > m + 1]} + 

limm+1→∞ sup {sup p* (Y   n   s1, Y   n t1): n >m ]} =0                                                     (4.12) 

So, we obtain,   

limm+1→∞ sup {sup [p* (Y  m+1s1, Y  n+1 t1) : n + 1 > m + 1]}  =0                                            (4.13) 

From equation (4.13) and lemma (2.5)    

∃ two sequences {  𝑠𝑘𝑚+1

1  },{ 𝑡 𝑘𝑚+1

1   }  both are subsequences of { 𝑠𝑚+1
1 } and { 𝑡𝑚+1

1 }   

  in such a way that 
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limm+1→∞ qp( 𝑠𝑚+1
1 ,  𝑡𝑚+1

1 )=0                                                           (4.14) 

 

   Since Y has a unique fixed-point z in S and from equation (10) and lemma 2.5; 

qp(𝔷 ,Y  𝔷 ) = 0 

 Therefore 𝔷 is a fixed point of Y. 

 

UNIQUENESS 

Suppose 𝔷 = Y  𝔷  and v = Y   v 

Then by hypothesis, we get 

p∗( 𝔷, v) = p∗(v, 𝔷) = p∗( Y  𝔷 , Y v) ≤ ψ(max{p∗( v, 𝔷), p∗(v, v), p∗( 𝔷, 𝔷), p∗( 𝔷, v)})                           (4.15) 

 

p∗( 𝔷, 𝔷)=p∗( Y 𝔷, Y 𝔷) = p∗( v,v)=p∗( Y v, Y v)≤ψ(max{p∗( v, 𝔷), p∗( v, v), p∗( 𝔷, 𝔷), p∗( 𝔷, v)}) 

From hypothesis and equation (4.15) 

max{p∗( v, 𝔷), p∗( v, v), p∗( 𝔷, 𝔷), p∗( 𝔷, v)} = 0                                                                                              (4.16) 

From (4.16) and Lemma 2.3, we obtained v = 𝔷. So 𝔷 is the unique fixed point of Y  in S. 

From the above theorem, we have following corollary: 

Corollary 4.2: A complete quasi partial metric space be (S, dq) and p is a u-distance on S. Let T:  S → S be a 

mapping, satisfy the following assertations 

(i) p∗( Y  s1, Y  t1) ≤ j (max[p∗(s1, t1), p∗(s1, Y s1), p∗(t1, Y t1), p∗(t1, Y s1),               

                                     p∗(t1, s1),  p∗( Y s1, s1), p∗( Y t1, t1), p∗( Y t1, s1), p∗( Y s1, t1) 

For some j ∈ (0, 1) and for all (s1, t1) ∈ S 

(ii) ∀ s1 ∈ S with limm+1⟶∞ Y   m+1s1=𝑐𝑠1∈ S ,such that limm+1⟶∞ Y    m+1s1 = Y   𝑐𝑠1  

Then,  𝔷  is a unique fixed point of Y and p∗( 𝔷, 𝔷) = 0. 

 

5.  EXISTENCE OF A SOLUTION FOR AN INTEGRAL EQUATION 

Let the set of all continuous functions defined on [0, 1] is ϕ : R+⟶R+, satisfy conditions (b), (c), and (d) 

of Lemma 2.6. 

(i) A non-decreasing is ψ and ψ(y) < y   for all y > 0; 

(ii)I-ψ is a non-decreasing and bijective function, where I is identity mapping on R+; 

(iii) ∑ 𝜓𝑛
𝑘=0

m(y) < ∞ for each y  ∈ (0, ∞). 
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Where ψm is n times repeated composition of ψ with itself. 

Let d, p*: S ×S→ R+ and ϕ: S×S×R+× R+ →R+ be mappings which is defined as   

d(s1, t1)= 𝑠𝑢𝑝𝑦∈[0,1] │ s1(y) - t1(y) | ; p(s1, t1)= 𝑠𝑢𝑝𝑦∈[0,1] │ s1(y)|   , and ϕ(s1, t1, x, y) = s1 

  ∀ s1, t1 ∈S and x, y ∈ R+. Then (S, qp) is a quasi-partial metric space and h is a u-distance on the set S. 

  

Here we prove the solution of integral equation of the existence theorem by the    theorem 

s1(y) = r(s1, y)+ ∫ 𝑂
1

0
(y, x)f (x, s1(x)dx                                                                                          (5.1) 

Where s1∈ S, r: S×R→R, O: [1,0]×[o,1]→R and f : [1,0] ×R →R are given mappings. 

In support of above application, we shall prove a theorem. 

 

Theorem 5.1: Let the following assertation holds: 

 (I1) There is a continuous mapping r : S × R → R such that 

|r (s1, y) ≤   
1

2
 ψ(|s1(y)|) for all s1 ∈ S and y ∈ R. 

 

 (I2) O : [0, 1] × [0, 1] → R is a continuous mapping in such a way that 

O (y, x) ≤  
1

2
  for all y, x ∈ [0, 1]. 

 

 (I3) f:  [0, 1] × R → R is a continuous mapping in such a way that 

|f (x, s1(x)) | ≤ ψs1(x) ∀ s1 ∈ S and x ∈ [0, 1]. 

           

 (I4) for each s1 ∈ S with limm⟶∞ Y   ms1= 𝑐𝑠1  ∈ S, there exist t1∈ S such that limm⟶∞ Y   m t1 = Y 𝑐𝑠1     

Then equation (4.1) has a solution s1 ∈ S. 

Proof: Let a mapping Y    : S → S defined by 

(Y  s1) (y) = r(s1, y) + ∫ 𝑂
1

0
(y, x)f (x, s1(x)dx    ∀s1 ∈ S and y ∈ [0, 1]. 

From (I1), (I2) and (I3) 

| (Y  s1)(y)| = |r(s1, y) +O (y, x) f (x, s1(x)dx| 

| (Y  s1)(y)| = |r(s1, y) +∫ 𝑂
1

0
(y, x) f (x, s1(x)dx| 

≤ |r (s1, y) | + |∫ 𝑂
1

0
 (y, x) f (x, s1(x)dx| 
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≤ |r (s1, y) | +
 
|∫ 𝑂

1

0

 (y, x) | |f (x, s1(x) dx| 

≤ |r (s1, y) | +
 1
2

 
|∫ 𝜓(│

1

0
s1(x)|dx 

≤ 
1

2
 (𝜓|(s1(y)|) +

1

2

 
|∫ 𝜓(

1

0
𝑠𝑢𝑝𝑦∈[0,1]│ s1(y) | dx| 

≤ 
1

2
 (𝜓|(s1(y)|) +

1

2

 
|∫ 𝜓(

1

0
𝑠𝑢𝑝𝑦∈[0,1]│ s1(y)|) dx| 

≤ 
1

2
 (𝜓|(s1(y)|) +

1

2
 𝜓(

 
𝑠𝑢𝑝𝑦∈[0,1]│ s1(y) | ) 

 

∀ s1 ∈ S and x ∈ [0, 1]. Then 

 

p (Y  s1, Y   t1)=𝑠𝑢𝑝𝑦∈[0,1] │ (Y  s1)(y)│ ≤𝑠𝑢𝑝𝑦∈[0,1] {
1

2
(𝜓│ s1(y) │)+

1

2
𝜓(𝑠𝑢𝑝𝑦∈[0,1]│ s1(y) │)} 

 

≤ 
1

2
(𝜓│ s1(y) │) + 

1

2
𝜓(𝑠𝑢𝑝𝑦∈[0,1] │ s1(y) │) 

 

≤ 𝜓(𝑠𝑢𝑝𝑦∈[0,1] │ s1(y) │) 

 

≤ ψ (max {𝑠𝑢𝑝𝑦∈[0,1] │ s1(y)│, 𝑠𝑢𝑝𝑦∈[0,1] │ t1(y) │,𝑠𝑢𝑝𝑦∈[0,1] │ Y  s1 (y) │, 

𝑠𝑢𝑝𝑦∈[0,1] │ (Y   t1 )(y) │}) 

 

= ψ(max{p∗(s1, t1), p∗(s1, Y  s1), p∗(t1, Y   t1), p(t1, s1), p∗( Y  s1, s1), p∗( Y  t1, t1)}) 

∀ s1, t1 ∈ S. 

There for each and every assumption of theorem 3.5 is satisfied. Hence the mapping Y   has a fixed point. 

This point is the solution of the integral equation (5.1). 

Now if s1, t1 ∈ (1, ∞) ∩ Q, then      

qp(Gs1, Gt1) =max {(t1 −
4

9
) –( s1 −

4

 9
), 0} + (s1 −

4

 9
) 

qp(Gs1, Gt1) =max {(t1 − s1), 0} + (s1 −
4

 9
) 

Now we take three conditions i.e., s1 = t1, s1 > t1, s1 < t1. 

(i) If s1 = t1 then qp (Gs1, Gt1) = k max {qp (s1, t1), qp (s1, Gs1), qp (t1, Gt1), qp (s1, Gt1), qp(t1, Gs1)}    

By fixed point theory s1 = Gs1 and t1 = Gt1 

qp (Gs1, Gs1) = k max {qp (s1, t1), qp (s1, s1), qp (t1, t1), qp (s1, t1), qp (t1, s1)} 

max{(s1−s1), 0} +(s1− 
4

 9
)   = k max {qp (s1, s1), qp (s1, s1), qp (s1, s1), qp (s1, s1, qp (s1, s1)} 

(s1 - 
4

 9
)= k {qp (s1, s1)} = 

4

 13
qp (s1, s1) 
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(ii)If s1 > t1 then qp (Gs1, Gt1) ≤ k max {qp (s1, t1), qp (s1, Gs1), qp (t1, Gt1), qp (s1, Gt1), qp (t1, Gs1)} 

By fixed point theory s1 = Gs1 and t1 = Gt1 

.qp (s1, t1) ≤ k max {qp (s1, t1), qp (s1, s1), qp(t1, t1), qp(s1, t1), qp(t1, s1)} 

qp(s1, t1) ≤ k max {qp(s1, t1)} ≤
4

 13
 qp(s1, t1) 

 

(iii)If s1 < t1 then qp (Gs1 ,Gt1) ≤ k max {qp (s1, t1), qp (s1, Gs1), qp (t1, Gt1), qp (s1, Gt1), qp (t1, Gs1)} 

By fixed point theory s1 = Gs1 and t1 = Gt1 

qp(s1, t1) ≤ k max {qp(s1, t1), qp(s1, s1), qp(t1, t1), qp(s1, t1), qp(t1, s1)} 

qp(s1, t1) ≤ k max {qp(s1, t1)} ≤
4

  13
qp(s1, t1) 

In each case, it’s a contradiction  

 Now, if s1, t1 ∈𝐵 (𝑠0
1 , 𝑟) ∩ Q then 

qp (Gs1, Gt1) =max {
1

10
t1 −

1

10
s1, 0} +

1

10
s1 

qp (Gs1, Gt1) =max {
1

10
 [(t1 − s1, 0} + s1]} = max 

1

 10
q (s1, t1) 

qp (Gs1, Gt1) =
1

 10
 qp (s1, t1) <

4

 13
qp (s1, t1) 

So qp (Gs1, Gt1) ≤ k max qp(s1, t1 ), qp(s1, Gs1), qp(t1, Gt1), qp(s1, Gt1), qp(t1, Gs1) is fulfilled. 

Furthermore, 0 is the fixed point of G and qp(s1, t1) = 0 

 
6. CONCLUSION 

In the computational analysis, the algorithms is 

the computations that evaluate their running 

time of this algorithms. The running time play an 

important role in computer algorithm. In current 

paper, following the original task of Ume [23] 

and prove fixed point of Ciric type single valued 

and p-contractive map in quasi- partial metric 

space. Here we proven the existence and 

uniqueness of fixed points using ψ generalized 

single valued and p-contractive ciric type map 

with respect to u distance in Theorem 4.1 and 

Theorem 5.1 has been proved for the support of 

application portation. The noble idea of Banach 

was enforced by Ume for ciric type in complete 

metric space. Moreover, this result are no 

technical for modelling the algorithm complexity 

and, motived by this disadvantage, we proved 

the existence and uniqueness of a fixed point 

theorem in partial quasi- metric space. In the 

present paper, we focus our achievements on 

construct a fixed point on the frame of partial 

quasi- metric space that allowed a program 

verification mathematical tool. Current result is 

useful to find more applications in another field 

of fixed-point theory. 
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