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ABSTRACT.  
In this paper we defined and characterized the concept of generalized fuzzy closure(generalizedℱ −
closure) andgeneralized fuzzy interior (generalizedℱ − interior) and obtained some significant 
results in this context with help of various supporting examples. 
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1. INTRODUCTION 
Azad [1] has introduced the concept of fuzzy 
semi-open sets in fuzzy topological spaces. 
Bin Shahana [3-4] has introduced the 
concept of fuzzy pre-open sets and fuzzy α-
open sets in fuzzy topological space. Thakur 
[9] has introduced the concept of fuzzy semi 
pre-open sets in fuzzy topological spaces. 
Csaszar [6] introduced the notions of 
generalized topological spaces.He also 
introduced the notions of continuous 
functions and associated interior and closure 
operators on generalized neighborhood 
systems and generalized topological spaces. 

PalaniCheety [7] introduced the concept of 
generalized fuzzy topology and investigates 
various properties.  
In this paper, we have introduced the concept of 
generalizedℱ − closure and generalizedℱ −
interiorand verify the results with the help of some 
counter examples.Some require basic definitions, 
concepts of generalizedℱ − topological space and 
notations are discussed in Section 2. In section 3, we 
study the concept of generalizedℱ − 𝒞losure 
and generalizedℱ − Interior in 
generalizedℱ −topological space. Finally, Section 4 
concludes the paper. 

2. Preliminaries 
Definition 2.1: Let X be a crisp set and let μbe a collection of fuzzy sets on X. Then μis called 
generalizedℱ − topologyon X if it satisfies following conditions 
i) The fuzzy sets 0 and 1 are in μ  where 0,1: X → I  are defined as 0(x) = 0  and 1(x) =

1  for all x ∈ X 
ii) If {λj}, j ∈ J is any family of fuzzy sets on X where λj ∈ μ then∪j∈J λj ∈ μ  

The pair (X, μ) is called generalizedℱ − topological 𝒮pace 

Dr. Nazir Ahmad Ahengar et al/Generalized − Closure and Interior

𝐆𝐞𝐧𝐞𝐫𝐚𝐥𝐢𝐳𝐞𝐝 − 𝐂𝐥𝐨𝐬𝐮𝐫𝐞 𝐚𝐧𝐝 𝐈𝐧𝐭𝐞𝐫𝐢𝐨𝐫

4667

mailto:nzrhmd97@gmail.com


 

 

eISSN1303-5150                                                                                                                                             www.neuroquantology.com

 

Definition 2.2: Let (X, μ)be generalizedℱ − topological 𝒮pace. The members of the collection μ are 
called generalizedℱ − 𝒪pen 𝒮et in generalizedℱ − topological 𝒮pace . The complement of 
generalizedℱ − 𝒪pen 𝒮et in X is called generalizedℱ − 𝒞lose 𝒮et 
Definition 2.3: Let (X, μ)be generalizedℱ − topological 𝒮pace. For a fuzzy setA in X the 𝒞losure of A 

is defined as Clμ(A) = inf {K ∶ A ⊆ K, KC ∈ μ}. ThusClμ(A) is the smallest 𝒞losed 𝒮et in X containing 

the fuzzy generalizedℱ − 𝒪pen 𝒮et A. From the definition, if follows that Clμ(A)is the intersection of 

all generalizedℱ − 𝒞losed 𝒮ets  in X containing A.  
Definition 2.4: Let (X, μ)be generalizedℱ − topological 𝒮pace. For a fuzzy 𝒮et A in X, the ℐnteriorof 
A, is defined as Iμ(A) = Sup{Q : Q ⊆ A, Q ∈ μ}. Thus Iμ(A) is the largest generalizedℱ −  𝒪pen 𝒮et in 

X contained in the fuzzy 𝒮etA. From the definition, if follows that Iμ(A) is the union of all 

generalizedℱ −  𝒪pen 𝒮et in X contained in A.  
Proposition 2.1: Let (X, μ) be generalizedℱ − topological 𝒮pace.Then:                    
i) 0 and 1 are fuzzy generalizedℱ − 𝒞losed 𝒮ets  in X.  
ii) Arbitrary intersection of generalizedℱ − 𝒞losed 𝒮ets  in X is  generalizedℱ − 𝒞losed 𝒮et in X.   

3  𝐆𝐞𝐧𝐞𝐫𝐚𝐥𝐢𝐳𝐞𝐝𝓕 − 𝓒𝐥𝐨𝐬𝐮𝐫𝐞 and  𝐆𝐞𝐧𝐞𝐫𝐚𝐥𝐢𝐳𝐞𝐝𝓕 − 𝐈𝐧𝐭𝐞𝐫𝐢𝐨𝐫 
Proposition 3.1: Let (X, μ) begeneralizedℱ − topological 𝒮pace and let A be a fuzzy set in X. Then  A  
is generalizedℱ − 𝒞losed 𝒮et if and only ifClμ(A) = A . 

Proof: Suppose thatλ  is generalizedℱ − 𝒞losed 𝒮et in X. then clearly the smallest generalizedℱ −
𝒞losed 𝒮et  containing A  is itself  A.  Hence Clμ(A) = A. Conversely suppose Clμ(A) = A then by 

definition of generalizedℱ −  𝒞losure it follow thatClμ(A)is generalizedℱ −  𝒞losed 𝒮et. 

Proposition 3.2: Let (X, μ)  be generalizedℱ − topological 𝒮pace  and let A and B are two 
generalizedℱ − 𝒪pen 𝒮et on X. Then following properties holds.  
i) Clμ(0) = 0. 

ii) Clμ(1) = 1. 

iii) If  A ⊆ B   then    Clμ(A) ⊆ Clμ(B). 

iv) Clμ(A) ∪ Clμ(B) ⊆   Clμ(A ∪ B). 

v) Clμ (Clμ(A)) = Clμ(A) 

Proof: Since 0 and 1 are  generalizedℱ − 𝒞losed 𝒮et  from let (X, μ)  be generalizedℱ −
topological 𝒮pace and let A be generalizedℱ − 𝒪pen 𝒮et in X. then A is generalizedℱ − 𝒞losed 𝒮et if 
and only if Clμ(A) = Awe have Clμ(0) = 0and  Clμ(1) = 1. Suppose A ⊆ B in X. Since  B ⊆ Clμ(B) 

and A ⊆ B  we have A ⊆ CIμ(B). Now Clμ(B)  is a generalizedℱ − 𝒞losed 𝒮et  we have, Clμ(A) ⊆

Clμ(B) because Clμ(A) is the smallest generalizedℱ − 𝒞loaed 𝒮etcontaining A. As A ⊆ A ∪ B , B ⊆

A ∪ B   we have Clμ(A) ⊆ Clμ(A ∪ B)  and Clμ(B) ⊆ Clμ(A ∪ B)  this implies Clμ(A) ∪ Clμ(B) ⊆

Clμ(A ∪ B). Since Clμ(A)  is generalizedℱ − 𝒞losed 𝒮et in X. if follow that  Clμ (Clμ(A)) = Clμ(A).  

Proposition 3.3:  Let X be generalizedℱ − topological 𝒮pace and {Aj}jϵJbe a family of fuzzy subsets of 

X. Then  

i) ∪j∈J Clμ(Aj) ⊆ Clμ(∪j∈J Aj). 
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ii) Clμ(∩j∈J Aj) ⊆  ∩j∈J Clμ(Aj) .  

Proposition 3.4: Let A be generalizedℱ − 𝒪pen 𝒮etin generalizedℱ − topological𝒮pace (X, μ). Then 
A  is generalizedℱ −  𝒪pen 𝒮et  if and only ifIμ(A) = A 

Proof: Suppose that A is generalizedℱ − 𝒪pen 𝒮et in X. Since Iμ(A)is the union of all generalizedℱ −

 𝒪pen 𝒮et in X contained in  A and  A ⊆ A  follows that  A ⊆ Iμ(A).  As we know that Iμ( A) ⊆  A ,  we 

find that Iμ(A) = A.  

Conversely, suppose that Iμ(A) = A . Then by the definition of generalizedℱ − ℐnterior  of 

generalizedℱ −  𝒪pen 𝒮et  it follows that Iμ(A)  is generalizedℱ −  𝒪pen 𝒮et . Thus  A  is 

generalizedℱ −  𝒪pen 𝒮et in X.  
Proposition 3.5: Let (X, μ) be generalizedℱ − topological 𝒮pace and A, B are two fuzzy 𝒮ets in X. 
Then  
i) Iμ(0) = 0. 

ii) Iμ(1) = 1.   

iii) If  A ⊆ B   then    Iμ(A) ⊆ Iμ(B). 

iv) Iμ(A ∪ B) = Iμ(A) ∪ Iμ(B). 

v) Iμ(A ∩ B) ⊆ Iμ(A) ∩ Iμ(B). 

vi) Iμ (Iμ(A)) = Iμ(A). 

Proof: Since 0 and 1 are generalizedℱ −  𝒪pen 𝒮ets in generalizedℱ − topological  
𝒮pace(X, μ)and let A be generalizedℱ − 𝒪pen 𝒮et in X. Then A is generalizedℱ − 𝒪pen 𝒮et if and 
only if Iμ(A) = Awe have Iμ(0) = 0and  Iμ(1) = 1. Suppose A ⊆ B in X. Since Iμ(A) ⊆ A and A ⊆ B 

we have Iμ(A) ⊆ B. Now Iμ(B) is generalizedℱ −  𝒪pen 𝒮et we have Iμ(A) ⊆ Iμ(B) because Iμ(B) is 

the largest generalizedℱ −  𝒪pen 𝒮et contained in B. As A ⊆ A ∪ B, B ⊆ A ∪ B we have Iμ(A) ⊆

IμA ∪ B)  and Iμ(B) ⊆ Iμ(A ∪ B).  This implies Iμ(A) ∪ Iμ(B) ⊆ Iμ(A ∪ B).  Since Iμ(A)  is 

generalizedℱ − 𝒪pen 𝒮et in X, it follow that  Iμ (Iμ(A)) = Iμ(A) 

Proposition 3.6: Let X be generalizedℱ − topological 𝒮pace and {Aj}jϵJbe a family of subsets of X. 

Then  

i) ∪j∈J Iμ(Aj) ⊆ Iμ(∪j∈J Aj). 

ii) Iμ(∩j∈J Aj) ⊆  ∩j∈J Iμ(Aj). 

Proposition 3.7:Let (X, μ) be generalizedℱ − topological 𝒮pace  and  λ  be a fuzzy set in X. Then   
i) Clμ(1 − A) = 1 − Iμ(A ). 

ii) Iμ(1 − A) = 1 − Clμ(A). 

Proof (i): We have Iμ(A ) =∪j Aj where Aj aregeneralizedℱ −  𝒪pen 𝒮ets in X. and Aj ⊆ A for all j ∈

J.  This implies 1 − Iμ(A ) = 1 −∪j Aj =  ∩j Aj
c  , where { Aj

c } is the family of generalizedℱ −

𝒞losed 𝒮ets containing  1 −  A.  Hence, by definition of generalizedℱ − 𝒞losure of fuzzy set we have 
Clμ(1 − A) = 1 − Iμ(A ). 
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(ii): Further, we have Clμ(A) = Clμ(1 − (1 − A)) = Clμ(1 − Aj
c) = 1 − Iμ(Aj

c). This implies Iμ(1 − A) =

1 − Clμ(A). 
5. Conclusion 
In this Paper we have studied the concept of 

generalizedℱ − closure and 
generalizedℱ − interior  and verify the 
results with the help of some examples. 
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