

¹Dr. Nazir Ahmad Ahengar, ²Dr. IromTomba Singh, ³Dr. Harikumar Pallathadka

¹Department of Mathematics, SoE, Presidency University, Bengaluru-560064 India ^{2, 3} Department of Mathematics and Department of Management Sciences, Manipur International University, Manipur-795140, India Email Id: nzrhmd97@gmail.com

ABSTRACT.

In this paper we defined and characterized the concept of generalized fuzzy closure(generalized_{\mathcal{F}} - closure) and generalized fuzzy interior (generalized_{\mathcal{F}} - interior) and obtained some significant results in this context with help of various supporting examples.

Keywords:Fuzzyopenset,fuzzytopologicalspace,generalized \mathcal{F} - topologicalspace,,generalized \mathcal{F} - closure,generalized \mathcal{F} - interiorNEUROQUANTOLOGY2022;20(19):4667-4670DOINUMBER:10.48047/NQ.2022.20.19.NQ99429NEUROQUANTOLOGY2022;20(19):4667-4670

1. INTRODUCTION

Azad [1] has introduced the concept of fuzzy semi-open sets in fuzzy topological spaces. Bin Shahana [3-4] has introduced the concept of fuzzy pre-open sets and fuzzy α -open sets in fuzzy topological space. Thakur [9] has introduced the concept of fuzzy semi pre-open sets in fuzzy topological spaces. Csaszar [6] introduced the notions of generalized topological spaces.He also introduced the notions of continuous functions and associated interior and closure operators on generalized topological spaces.

PalaniCheety [7] introduced the concept of generalized fuzzy topology and investigates various properties.

In this paper, we have introduced the concept of generalized_{*F*} – closure and generalized_{*F*} – interiorand verify the results with the help of some counter examples. Some require basic definitions, concepts of generalized_{*F*} – topological space and notations are discussed in Section 2. In section 3, we study the concept of generalized_{*F*} – *C*losure and generalized_{*F*} – Interior in generalized_{*F*} – topological space. Finally, Section 4 concludes the paper.

2. Preliminaries

Definition 2.1: Let X be a crisp set and let μ be a collection of fuzzy sets on X. Then μ is called generalized_F – topologyon X if it satisfies following conditions

- i) The fuzzy sets 0 and 1 are in μ where 0,1: $X \to I$ are defined as 0(x)=0 and 1(x)=1 for all $x \in X$
- ii) If $\{\lambda_j\}$, $j \in J$ is any family of fuzzy sets on X where $\lambda_j \in \mu$ then $\bigcup_{j \in J} \lambda_j \in \mu$ The pair (X, μ) is called generalized \mathcal{F} – topological \mathcal{S} pace

4667

Neuroquantology | November 2022 | Volume 20 | Issue 19 |PAGE 4667-4670 | DOI: 10.48047/NQ.2022.20.19.NQ99429 Dr. Nazir Ahmad Ahengar et al/Generalized – Closure and Interior

Definition 2.2: Let (X, μ) be generalized_{\mathcal{F}} – topological \mathcal{S} pace. The members of the collection μ are called generalized_{\mathcal{F}} – \mathcal{O} pen \mathcal{S} et in generalized_{\mathcal{F}} – topological \mathcal{S} pace. The complement of generalized_{\mathcal{F}} – \mathcal{O} pen \mathcal{S} et in X is called generalized_{\mathcal{F}} – \mathcal{C} lose \mathcal{S} et

Definition 2.3: Let (X, μ) be generalized_{\mathcal{F}} – topological S pace. For a fuzzy setA in X the Closure of A is defined as $Cl_{\mu}(A) = \inf\{K : A \subseteq K, K^{C} \in \mu\}$. Thus $Cl_{\mu}(A)$ is the smallest Closed Set in X containing the fuzzy generalized_{\mathcal{F}} – \mathcal{O} pen Set A. From the definition, if follows that $Cl_{\mu}(A)$ is the intersection of all generalized_{\mathcal{F}} – \mathcal{C} losed S ets in X containing A.

Definition 2.4: Let (X, μ) be generalized_{\mathcal{F}} – topological \mathcal{S} pace. For a fuzzy \mathcal{S} et A in X, the \mathcal{I} nterior of A, is defined as $I_{\mu}(A) = \sup\{Q : Q \subseteq A, Q \in \mu\}$. Thus $I_{\mu}(A)$ is the largest generalized_{\mathcal{F}} – \mathcal{O} pen \mathcal{S} et in X contained in the fuzzy \mathcal{S} et A. From the definition, if follows that $I_{\mu}(A)$ is the union of all generalized_{\mathcal{F}} – \mathcal{O} pen \mathcal{S} et in X contained in A.

Proposition 2.1: Let (X, μ) be generalized_{*F*} – topological *S*pace.Then:

i) 0 and 1 are fuzzy generalized $_{\mathcal{F}} - \mathcal{C}losed \mathcal{S}ets$ in X.

ii) Arbitrary intersection of generalized $_{\mathcal{F}} - \mathcal{C}$ losed Sets in X is generalized $_{\mathcal{F}} - \mathcal{C}$ losed Set in X.

3 Generalized $_{\mathcal{F}}$ – Closure and Generalized $_{\mathcal{F}}$ – Interior

Proposition 3.1: Let (X, μ) begeneralized_{\mathcal{F}} – topological S pace and let A be a fuzzy set in X. Then A is generalized_{\mathcal{F}} – \mathcal{C} losed Set if and only if $Cl_{\mu}(A) = A$.

Proof: Suppose that λ is generalized_{\mathcal{F}} – \mathcal{C} losed \mathcal{S} et in X. then clearly the smallest generalized_{\mathcal{F}} – \mathcal{C} losed \mathcal{S} et containing A is itself A. Hence $Cl_{\mu}(A) = A$. Conversely suppose $Cl_{\mu}(A) = A$ then by definition of generalized_{\mathcal{F}} – \mathcal{C} losure it follow that $Cl_{\mu}(A)$ is generalized_{\mathcal{F}} – \mathcal{C} losed \mathcal{S} et.

Proposition 3.2: Let (X, μ) be generalized_{\mathcal{F}} – topological S pace and let A and B are two generalized_{\mathcal{F}} – \mathcal{O} pen S et on X. Then following properties holds.

i) $Cl_{\mu}(0) = 0.$

ii)
$$Cl_{\mu}(1) = 1.$$

iii) If $A \subseteq B$ then $Cl_{\mu}(A) \subseteq Cl_{\mu}(B)$.

iv)
$$\operatorname{Cl}_{\mu}(A) \cup \operatorname{Cl}_{\mu}(B) \subseteq \operatorname{Cl}_{\mu}(A \cup B).$$

v)
$$\operatorname{Cl}_{\mu}(\operatorname{Cl}_{\mu}(A)) = \operatorname{Cl}_{\mu}(A)$$

Proof: Since 0 and 1 are generalized_{*F*} - *C*losed Set from let (X, μ) be generalized_{*F*} - topological Space and let A be generalized_{*F*} - *O*pen Set in X. then A is generalized_{*F*} - *C*losed Set if and only if $Cl_{\mu}(A) = Awe$ have $Cl_{\mu}(0) = 0$ and $Cl_{\mu}(1) = 1$. Suppose $A \subseteq B$ in X. Since $B \subseteq Cl_{\mu}(B)$ and $A \subseteq B$ we have $A \subseteq CI_{\mu}(B)$. Now $Cl_{\mu}(B)$ is a generalized_{*F*} - *C*losed Set we have, $Cl_{\mu}(A) \subseteq Cl_{\mu}(A)$ is the smallest generalized_{*F*} - *C*loaed Setcontaining A. As $A \subseteq A \cup B$, $B \subseteq A \cup B$ we have $Cl_{\mu}(A) \subseteq Cl_{\mu}(A \cup B)$ and $Cl_{\mu}(B) \subseteq Cl_{\mu}(A \cup B)$ this implies $Cl_{\mu}(A) \cup Cl_{\mu}(B) \subseteq Cl_{\mu}(A \cup B)$. Since $Cl_{\mu}(A)$ is generalized_{*F*} - *C*losed Set in X. if follow that $Cl_{\mu}(Cl_{\mu}(A)) = Cl_{\mu}(A)$. **Proposition 3.3:** Let X be generalized_{*F*} - topological Space and $\{A_i\}_{i \in I}$ be a family of fuzzy subsets of

X. Then

i)
$$\cup_{j \in J} \operatorname{Cl}_{\mu}(A_j) \subseteq \operatorname{Cl}_{\mu}(\bigcup_{j \in J} A_j).$$

ii) $\operatorname{Cl}_{\mu}(\bigcap_{j \in J} A_j) \subseteq \bigcap_{j \in J} \operatorname{Cl}_{\mu}(A_j)$.

Proposition 3.4: Let A be generalized_{*F*} – \mathcal{O} pen Setin generalized_{*F*} – topologicalSpace (X, μ). Then A is generalized_{*F*} – \mathcal{O} pen Set if and only ifI_{μ}(A) = A

Proof: Suppose that A is generalized_{*F*} - \mathcal{O} pen Set in X. Since $I_{\mu}(A)$ is the union of all generalized_{*F*} - \mathcal{O} pen Set in X contained in A and A \subseteq A follows that A \subseteq $I_{\mu}(A)$. As we know that $I_{\mu}(A) \subseteq A$, we find that $I_{\mu}(A) = A$.

Conversely, suppose that $I_{\mu}(A)=A$. Then by the definition of $generalized_{\mathcal{F}}-\mathcal{I}nterior$ of $generalized_{\mathcal{F}}-\mathcal{O}pen\,\mathcal{S}et$ it follows that $I_{\mu}(A)$ is $generalized_{\mathcal{F}}-\mathcal{O}pen\,\mathcal{S}et$. Thus A is $generalized_{\mathcal{F}}-\mathcal{O}pen\,\mathcal{S}et$ in X.

Proposition 3.5: Let (X, μ) be generalized_F – topological Space and A, B are two fuzzy Sets in X. Then

i) $I_{\mu}(0) = 0.$

ii) $I_{\mu}(1) = 1.$

- iii) If $A \subseteq B$ then $I_{\mu}(A) \subseteq I_{\mu}(B)$.
- iv) $I_{\mu}(A \cup B) = I_{\mu}(A) \cup I_{\mu}(B).$
- v) $I_{\mu}(A \cap B) \subseteq I_{\mu}(A) \cap I_{\mu}(B).$
- vi) $I_{\mu}(I_{\mu}(A)) = I_{\mu}(A).$

Proof: Since 0 and 1 are generalized $_{\mathcal{F}} - \mathcal{O}$ pen Sets in generalized $_{\mathcal{F}} -$ topological

 \mathcal{S} pace(X, μ) and let A be generalized $_{\mathcal{F}} - \mathcal{O}$ pen \mathcal{S} et in X. Then A is generalized $_{\mathcal{F}} - \mathcal{O}$ pen \mathcal{S} et if and only if $I_{\mu}(A) = A$ we have $I_{\mu}(0) = 0$ and $I_{\mu}(1) = 1$. Suppose $A \subseteq B$ in X. Since $I_{\mu}(A) \subseteq A$ and $A \subseteq B$ we have $I_{\mu}(A) \subseteq B$. Now $I_{\mu}(B)$ is generalized $_{\mathcal{F}} - \mathcal{O}$ pen \mathcal{S} et we have $I_{\mu}(A) \subseteq I_{\mu}(B)$ because $I_{\mu}(B)$ is the largest generalized $_{\mathcal{F}} - \mathcal{O}$ pen \mathcal{S} et contained in B. As $A \subseteq A \cup B$, $B \subseteq A \cup B$ we have $I_{\mu}(A) \subseteq I_{\mu}(A \cup B)$ and $I_{\mu}(B) \subseteq I_{\mu}(A \cup B)$. This implies $I_{\mu}(A) \cup I_{\mu}(B) \subseteq I_{\mu}(A \cup B)$. Since $I_{\mu}(A)$ is generalized $_{\mathcal{F}} - \mathcal{O}$ pen \mathcal{S} et in X, it follow that $I_{\mu}(I_{\mu}(A)) = I_{\mu}(A)$

 $\label{eq:proposition 3.6: Let X be generalized_{\mathcal{F}}-topological\,\mathcal{S}pace \, and \, \{A_j\}_{j\in J} be \, a \, family \, of \, subsets \, of \, X.$ Then

- i) $\bigcup_{j\in J} I_{\mu}(A_j) \subseteq I_{\mu}(\bigcup_{j\in J} A_j).$
- ii) $I_{\mu}(\cap_{j\in J} A_j) \subseteq \cap_{j\in J} I_{\mu}(A_j).$

Proposition 3.7:Let (X, μ) be generalized_{\mathcal{F}} – topological *S* pace and λ be a fuzzy set in X. Then i) $Cl_{\mu}(1 - A) = 1 - I_{\mu}(A)$.

ii) $I_{\mu}(1-A) = 1 - Cl_{\mu}(A).$

Proof (i): We have $I_{\mu}(A) = \bigcup_{j} A_{j}$ where A_{j} are generalized_{\mathcal{F}} – \mathcal{O} pen \mathcal{S} ets in X. and $A_{j} \subseteq A$ for all $j \in J$. This implies $1 - I_{\mu}(A) = 1 - \bigcup_{j} A_{j} = \bigcap_{j} A_{j}^{c}$, where $\{A_{j}^{c}\}$ is the family of generalized_{\mathcal{F}} – \mathcal{C} losed \mathcal{S} ets containing 1 - A. Hence, by definition of generalized_{$\mathcal{F}} - <math>\mathcal{C}$ losure of fuzzy set we have $Cl_{\mu}(1 - A) = 1 - I_{\mu}(A)$.</sub> 4669

(ii): Further, we have $Cl_{\mu}(A) = Cl_{\mu}(1 - (1 - A)) = Cl_{\mu}(1 - A_{j}^{c}) = 1 - I_{\mu}(A_{j}^{c})$. This implies $I_{\mu}(1 - A) = 1 - Cl_{\mu}(A)$.

5. Conclusion

In this Paper we have studied the concept of generalized $_{\mathcal{F}}$ – closure and generalized $_{\mathcal{F}}$ – interior and verify the results with the help of some examples.

References

- Azad, K.K., On fuzzy semi continuity, fuzzy almost continuity and fuzzy weak continuity, J. Math. Anal. Appl. 82 14-32, (1981).
- Beceren, Y., On strongly α-continuous functions, Far East J. Math. Sci. (FJMS), Special Volume, Part I-12, 51-58, (2000).
- 3. Bin Shahana, A.S., On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems 44 303-308, (1991).

- 4. Bin Shahana, A.S., Mappings in fuzzy topological spaces, Fuzzy Sets and Systems 61, 209-213, (1994).
- 5. Chang, C.L., Fuzzy topological spaces, J.Math. Anal. Appl.24, 182-190, (1968).
- 6. Csaszar, A., Generalized open sets in generalized topologies, Act a Mathematica Hungaria 96, 351-357, (2002).
- 7. PalaniCheety G. Generalizaed Fuzzy Topology, Italian J. Pure Appl. Math., 24,91-96, (2008)
- 8. Palaniappan N. Fuzzy Topology, Narosa Publishing House, New Delhi. (2002)
- 9. Thakur, S.S. and Singh, S., On fuzzy semipreopen sets and fuzzy semi-precontinuity, Fuzzy Sets and System, 98, 383-392, (1998).
- 10. Zadeh, L.A., Fuzzy sets, Inform. and Control 8, 338-353, (1965).

4670