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Abstract.

In this paper we introduce the concept of £-B-continuous maps in ¢-topological spaces and investigate its
various relationships with some other maps like totally ¢-B-continuous maps, perfectly ¢-B-continuous
maps and strongly¢-B-continuous maps. Further we introduce and study some &-B-generalized closed
sets and &-B-generalized continuous maps iné-topological spaces and investigate various relationship.

Keywords: &-continuous maps, &-[-continuous maps, totally &-[-continuous maps, perfectly &-§3-
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1 Introduction Levine N. [11-13] studied the concept of semi-open
In both the pure and applied domains, the impostancgeneralized closed sets and several types of
of general topology is quickly increasing. Inforroatibnuities in topological spaces. Nour T.M [18],
systems are fundamental instruments for genendtoguced the concept of totally semi-continuous
information understanding in any real-life sectdyrantiibns and discussed several relationships by
topological information collection structuremakieg the use of some counter examples. Singh D.
appropriate  mathematical models for [1Bdtimtroduced and studied the concepts of almost
guantitative and qualitative information mathem@icectly continuous functions. Recently Pious Missier

S. Anbarasi Rodrigo P. [24] introduced the concept of
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totally a*-continuous functions in topological sesteddish the relationships of these sets and maps
El-MaghrabiA.l and Nasef A.A. [25] introduceditinsome other sets and maps by making the use of
studied semi-closed and GS-closed sets in 208mndrcounter examples.

2013 Narmadha A. [26], introduced and studied In this research paper, someof the required
regular b-Open sets in topohagiical definitions, concepts of ¢ -topological and
spaces.Nithyanantha and Thangavelu[17] introdotztibns are discussed in Section 2. In section 3,
the concept of binary topology between two setamavady € - 8 -Continuous Mapswe have introduced
investigate some of the basic properties, wheneral £-Continuousmaps and have discussed their
binary topology from X to Y is a binary stroelatienships also. In section 4, headed by the concept
satisfying certain axioms that are analogous tfétfeGeneralized Closed Setswe introduced several
axioms of topology. Jamal M. Mustafa [9] statiednd studied their relationships. In section 5,
binary generalized topological spaces and investégated by the concept of &--Generalized Continuous
the various relationships of the maps so discussefapdwe introduced several §-continuous map and
some other maps. verify their relationships. Finally, Section 6 concludes
As an outline, the concept ofé-f-continuous tnappaper with possible scope of the concept.
totally & - B -continuous maps and strongly Thr@ughout the paper g(Y) denotes the power set of
continuous mapsare introduced in £-topological ¥paces

and investigate various relationships of these ZnBpsliminaries

Further we introducedé-f-generalized closed s8tsng-require and important definitions and concepts
generalized [-closed sets,&-f3-generalized contifdetapological space and notations have been given
mapsand & -generalized [ -ccontinuous mapsn hisiportion

Definition 2.1: Let Y; and Y, be any two non-void sets. Then &-topology (§;) from Y; to Y, is a binary
structure § € (Y;) X §(Y,) satisfying the conditions i.e. (@,9), (Y;,Y2) € €and If {(L,, M,); a €T}
is a family of elements of §, then (Uger Lq, Uger M) € &. If §is & from Y to Y5, then (Y4, Y5, §) is called
a &-topological space (§;S) and the elements of € are called the §-open subsets of (Y4,Y,,€). The
elements of Y; X Y, are called simply &-points.

Definition 2.2: LetY; and Y, be any two non-void set and (L{,M;), (L,, M,) are the elements of
(Y1) X $o(Y3). Then (L1, M;) € (Ly, M) onlyif L; € Lyand My € M,.

Remark 2.1: Let {T,; a € A} be the family of & from Y toY,. Then, Ngep Ty is also & from Y to Y.
Further Uyep Ty need not be §&;.

Definition 2.3: Let (Y;,Y;,§) be a§ Sand L € Y;,M € Y,. Then (L, M) is called &-closed in (Yq, Y5, §)if
(Y1\L, Y2\M) € &

Proposition 2.1: Let(Yq, Y, §)is §..S. Then (Y4,Y;) and (@, @) are §-closed sets. Similarly if {(Ly, My): a €
I} is a family of §-closed sets, then (Nger Lo, Noer My) is §-closed.

Definition 2.4: Let(Yy,Y,,§) is §Sand (L, M) € (Y4,Y,). Let (L, M)l*g = N{Ly: (Ly, My)is &-closed set
and (L,M) < (L,, My )}and (L, M)Z*€ = N{My: (Lo, Mp)is &-closed set and (L,M) € (L,, My)}.Then
(L, M)l*E , (L, M)Z*E) is € -closed set and (L,M) C (L, M)l*g , (L, M)Z*g) . The ordered pair

@
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((L, MY, (L, M)Z*E)) is called &-closure of (L,M) and is denoted Cl¢(L,M) in £.S(X,Y, 1) where
(L, M) € (Yq,Y2).

Proposition 2.2: Let(L, M) € (Y4,Y;). Then (L, M) is §-open in (Y4, Yy, §) iff (L, M) = I¢(L, M) and (L, M)
is &-closed in (Y4, Yy, §)iff (L, M) = Clg(L, M).

Proposition 2.3: Let (L, M) € (N, P) € (Yy,Yz)and (Y4, Y3, 8)is &S. Then Cle(@,0) = (@, 0), Cl¢(X,Y) =
XY), (LM) € ClL,M), (LMY (NP, (LM )E (NP)*,, Cl(L M) S Clg(N,P) and
Cl¢(Clg(L,M)) = Clg(L, M)

Definition 2.5: Let(Yy,Y,8)is §:Sand (L, M) € (Y4,Y,). Let (L, M)loE =U {Ly: (Ly, Mp)is &-open set
and (L,M) € (L,, My)}and (L, M)ZOE =U {M,: (Ly, My)is &-open set and (L,M) < (L,, M,)}.Then
(L, M)1°£ , (L, M)ZOE) is £ -open set and (L, M)loE , (L, M)ZOE) C (L,M) . The ordered pair
((L, M)lOE,(L, M)Zog)) is called ¢ -interior of (L,M) and is denoted I¢(L,M) in &.S(X,Y,u) where
(L, M) € (¥4,Y2).

Proposition 2.4: Let (L, M) S (Y4, Y3). Then (L, M) is §-open set in (Y4, Yy, §)iff (L, M) = I¢(L, M).
Proposition 2.5: Let (L,M) € (N,P) € (Y4,Yz)and (Y4,Y;,8)is §S. ThenI(®,0) = (0,0), (X, Y) =
XY), LMY, c (NP, (LM € (N,P)?’, (L M) S I(N,P) and I(I¢(L, M)) = I¢(L, M)
Proposition 2.6: Let (Y;,Y;,§) is & .Sand (Z,7)be Gr. Then the map F:(Z,7) - Y; X Y, is called ¢-
continuous if F~1(L, M) is T-open in (Z,T) for every &-open set (L, M)in (Y, Y5, £).

3.&-B-Continuous Maps ((BCM)

In this section, the concept ofé-f-continuous maps,totally &-[-continuous mapsandstronglyé-p3 -
continuous maps in §:Shave been introduced and established the relationships between these maps
and some other maps by making the use of some counter examples.

Definition 3.1: Let (Yq,Y;,8)is &S. Then (L,M) < (Y1,Y,,€) is said to be -B-open set (§BOS)if

(L, M) € Cle (I (Cle (L, M))).

Definition 3.2: Let (Y;,Y,,£) is &S and (Z,7)be Gr. Then the map F: (Z,T) — Y1 X Y, is said to be ¢-
[-continuous map(EFCM)F ~1(L, M) is T-B-open set in (Z,T') for every §-open set (L, M)in (Y4, Y5,£).
Example 3.1: Llet Z={1,23} , Y,={m;m,} and Y,={l;;l,} . Then T =
{9,{1},{1,2},{1,3},{2,3},Z} and &€ =
{(@,9), {my}, {1, ), {23, {121, (fmy}, {Y2 1), ((my}, {11 1), (Y1} {11 ), ({my}, {Y2}), (Y1, Y3)}. Clearly T is
Gy on Z and ¢ is & from Y;to Y,. Now define F:(Z,7) » Y, XY, by F(1) = (mp,1;)and F(2) =
(my, 1) = F(3) . Therefore F71(@, @) =0, F'({my}, (LD =23}, F{2}{})=1{2},
Fr{mg}, {21 = {23}, F7H{m}, {11 = {1}, F7r({Y4), (L) = {23}, F'{my}, {Y,}) = {13
and F~1(Y;, Y,) = Z. This shows that the inverse image of every&-open set in (Y;,Y;,€) isT-B-open
set in(Z,T).Hence F: (Z,T) - Y, X Y, is &B-continuous map.

Definition 3.3: Let (Y4, Y3,§) is §&:S and (Z,T)be Gr. Then the map F: (Z,7) = Y1 X Y, is said to be
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i) Totally £&-B-continuous map (TEBCM) if F~1(L,M) isT-f-clopen in (Z,T)for every £-open set
(L, M)in (Y1,Y2,9).

ii) Perfectly &-B-continuous map(TéBCM) if F~1(L, M) isT-clopen in (Z,T)for every B-B-open set
(L, M)in (Y1, Y5, €).

iii) Strongly £-B-continuous map (B2EER) if F~1(L, M) is@-B-clopen in (Z,@)for every B-set (L,M)in
(Yl' YZ' E)

Proposition 3.1:

i) Every totally B-Bl-continuous map in &S is B-B-continuous.

ii) Every totally B-continuous map in &S is totally B-B-continuous.

i) Every perfectly B-B-continuous map in &S is totally B-B-continuous.

iv) Every strongly B-Bl-continuous map in &S is totally B-B-continuous.

Proof: Let (Y4,Y,,§) is§Sand (Z,@) be Gy and the map F: (Z,@) — Y; XY, is totally §-B-continuous

map. Therefore F~1(L, M) is @-B-clopen in (Z,&). Since B-B-clopen is B-B-open in (Z,@). Thus F~1(L, M)

is B-B-open in (Z,@). Hence F: (Z,B) — Y4 X Y, is B-B-continuous map. The proof of (ii), (iii) and (iv) are

quite analogous.

Remark 3.1: Converse of Proposition 3.1 need not true in general shown in Example 3.2, Example 3.3,

Example 3.4 and Example 3.5.

Example 3.2: In Example 3.1, define F: (Z,B) - Y; X Y, by F(1) = (my,1;) = F(2)and F(2) = (m,, D).

Therefore F~1(8, @) = @, F~'({m.}, {I1}) = {12}, F'{@}, {1} = {8}, F'({my}, (V) = {212},

Fr{ma} (1) = {8}, FH({Ya} (1) = (1.2}, F({m}{Y}) = {8} and  F7'(Yy, Y,) =Z. This

shows that the inverse image of everyP-open set in (Y4, Y,, §) isB-B-open set in(Z,@). Hence F: (Z,B) —

Y1 X Y, is €&-B-continuous map but not totally €&-B-continuous map, because because {1,2} is Bl -B-open

but not B-B-clopen in (Z,&)

Example 3.3:Let Z={1,2,3}, Y; ={m;,m,} and Y, = {I;,,}. Then B = {0,{1,3},{2,3},Z}and € =

{(@,0), ({m1}, {11}), {m3}, {Y,}), (Y1,Y2)}. Clearly @is Gy on Z and B is & from Y to Y,. Now define

F:(Z,E) > Y, XY, by F(3) = (my,1ly) and F(1) = (my, ;) = F(2) . Therefore F1(@, ) =0,

Fr{m.}, (1) = {12}, F({m,}L{Y,}) = {3}and F~1(Y,, Y,) =Z. This shows that the inverse

image of every@-open set in (Y1,Y,,§) isB-B-clopen set in(Z,@). Hence F: (Z,@) — Y, X Y, is totally §-B-

continuous map but not totally é&-continuous, because {3} and {1,2} are @ -B-clopen but not BE-clopen

sets in (Z,0)

Example 3.4: In Example 3.3, F:(Z,B) - Y; X Y, is totally £&-B-continuous map but not perfectly &-

continuous, because inverse image of every &-B-open set in (Y4,Y,,§) is B-B-clopen but not B-clopen

sets in (Z, ).

Example 3.5: In Example 3.3, define F: (Z,@) - Y; X Y,by F(1) = (@,1,), F(2) = (m,, @) and F(3) =

(B, 8,). Therefore F~1(@, @) = @, F~'({my}, {I1}) = {8}, F~*({m,},{Y,}) = {3}and F~'(Yy, Y,) =

Z. This shows that the inverse image of everyB-open set in (Y1,Y5,§) is@-B-clopen set in(Z,@). Hence

F:(Z,E) - Y; XY, is totally &-B-continuous map but not strongly §-B-continuous, because inverse

image of every §-setin (Y1, Y5, §) is not B-clopen sets in
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Relationships of Various [ -continuous mapsthat we discussed in this section:

PIBCM
+
e - e [
5
SEBCM

Figure-1
4.7-B-Generalized Closed Sets (BZERR)
In this section, we have introduced and studied the concepts of, B-B-generalized closed sets and Bl -
generalized B-closed sets. Further,the relationships ofthese sets with some other sets have been
established by making the use of some counter examples.
Definition 4.1:Let (Yy,Y,,§)is §S. Then (LLM) < (Y4,Y,,§) is said to be
i) &pre-openif (L, M) S Ig(Clg(A, B)).
ii) &-B-openif (L, M) S Cle(l¢(Cl¢(A, B)))
i) €b-closed if (Cl(L, M)) N Cle (|§(L, M)) c (L M).
Definition 4.2:Let (Yy,Y,,§) is §:Sand (L,M) < (Yy,Y5,§), then
i) pCle(A B) = (A B) U Cle(Is(A, B)).

i) BCl(A,B) = (A,B) U |£(C|§(§(A B)))

Definition 4.3:Let (Y4, Y,§) is §Sand (LLM) € (Y1,Y,,8), then

i) (L, M)is B-pre-generalized closed set (BZEEE) if pClg(L, M) S (U, V) whenver (L,M) € (U,V) and
(U, V) is &-pre-open setin (Y4, Y5, §)

ii) (L M)is B-generalized pre-closed set (BREER) if pCl¢(L, M) € (U,V) whenver (L,M) € (U,V) and
(U,V) is &-open setin (Y4, Y,,€)

iii) (L, M)is B-B-generalized closed set(RRRRR)if BClg(L, M) € (U, V) whenver (L, M) < (U, V) and (U, V)
is €&-open setin (Y4,Y5,€)

iv) (LLM)is @ -generalized B-closed set (BRRER) if BClg(L,M) € (U,V) whenver (LLM) € (U,V) and
(U,V) is &-B-open setin (Y4, Y3, §)

v) (L, M)is B-b-generalized closed set(BRERR)if b(L, M) € (U, V) whenver (L,M) € (U,V) and (U,V) is
&-open setin (Y4, Y5, )

vi) (L,M)is & -generalized b-closed set(§GbCS)if bClg(L, M) < (U, V) whenver (L,M) < (U,V) and
(U, V) is &-b-open setin (Yy,Y5, )

Proposition 4.1:

i) Every &-generalized pre-closed set in&S is &-pre-generalized closed
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ii) Every &-generalized [-closed set in&S is &-B-generalized closed

iii) Every &-generalized b-closed setin&S is &-b-generalized closed

Proof: Obvious

Remark 4.1: The Converse of Proposition 4.1 is not true in general shown in Example 4.1, Example 4.2
and Example 4.3.

Example 4.1: let Y;={my;,m,m3} and Y, ={l,1,13} . Then & ={(0,0),
({m,}, {11, 1,D), {fmy, m3}, {15, ({11, 15}, {Y>2}), (Y3,Y5)}. Clearly € is & from Y;to Y,. Now consider,
({my, m3}, {I;,13}) € (fmy, my},{Y,}) . Therefore pClz({mpmz}' {l2,13}) = ({my, my}, {l;,13}) €
({m;,m,},{Y5}), where ({m;,m,},{Y,}) is & -pre-open. Therefore ({m;,m,},{l,,15}) is & -pre-
generalized closed but not &-generalized pre-closedbecause ({my, m,},{Y,}) is &-pre-open but not &-
open.

Example 4.2: In Example 4.1 the set ({m;, m,}, {l,,15}) is &-B-generalized closed but not &-generalized
B-closed because ({11,153}, {Y,}) is &-B-open but not &-open set.

Example 4.3: In Example 4.1 the set ({m, m,}, {l,,15})is &-b-generalized closed but not &-generalized b-
closed because ({11,153}, {Y,}) is &-b-open but not -open set.

Relationships of Various & -continuous maps that we discussed in this section

IPGCS | +—F—= EGPCS

(BGCS | +—F— §GBCS

tbGCS | +—F—= £GbCS
Figure-2

5. &-B-Generalized Continuous Maps (§BGCM)
In this section, we have introduced and studied the concepts of £--generalized continuous mapsand
& -generalized 3-ccontinuous maps. Further, the relationships of these maps with some other maps
have been established by making the use of some counter examples.
Definition 5.4:Let (Y, Y5, &) is &S and (Z, T )be Gp. Then the map F: (Z,T) — Y; X Y, is said to be
i) &-B-Continuous Map(EBCM)F~1(L,M) is T-B-closed in (Z,T) for every é-closed set (L, M)in
(YI'YZ' E)
ii) &-B-Generalized Continuous Map(§EBGCM)F~1(L,M) is T-f-generalized closed in (Z,T) for
every é-closed set (L, M)in (Y4, Y5, ).
iii)y &-B-Generalized Irresolute (EBGIF~1(L,M) is T-B-closed in (Z,T) for every £-B-closed set
(L, M)in (Y1, Y3, ).
iv) &-B-Irresolute (EFNF~1(L,M) is T - -generalized closed in (Z,T) for every £-[-generalized
closed set (L, M)in (Y, Y5, %).
v) &-b-Continuous Map(§BCM)F~1(L,M) is T-b-closed in (Z,T) for every &-closed set (L, M)in
(YI'YZ' E)
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Proposition 5.1:

i) Every &-B-Continuous Map in &S is &-B-Continuous Map

ii) Every &-B-Continuous Map in &S is &-B-Irresolute

iii) Every &-B-Continuous Map in &S is &-B-Generalized Irresolute

iv) Every &-B-Irresolute in &S is &-B-Generalized Continuous Map

v) Every &-B-Irresolute in &S is &-B-Generalized Irresolute

Proof: Follows from definitions

Remark 5.1: The Converse of Proposition 5.1 is not true in general shown in Example 5.1, Example 5.2,
Example 5.3, Example 5.4 and Example 5.5.
Example 5.1: Llet Z=1{1234} , Y;={m;m,mg} and Y, ={l,1,,13} . Then T =
+{®: {1}1 {314}' {1'2'4}1 {1;3;4} Z} and E = {(Q), @), ({ml}f {11}), ({mz}; {12})1 ({mz}: {Yz}), (Yll YZ)}
Clearly T is Gy on Z and ¢ is & from Y;to Y,. Now define F:(Z,T) - Y; X Y, by F(1) = (my,1;) =
F(2) and F(3) =(my0) =F(@4) . Therefore F 1@ &)=0 , F{m}, {41} ={12} ,
F1({m,},{1,}) = {@}and F~1(Y;, Y) = Z.This shows that the inverse image of every&-closed set in
(Y1,Y5,8) isT - B -generalized closed setin (Z,7). Hence F:(Z,T) -» Y; XY, is & - [ -generalized
continuous map but not&-B-continuous, because the set{1,2} are T -B-generalized closed but not 7--
closed setin (Z,T)
Example 5.2: Let Z=1{1234}, Y, ={m;,m,m3} and Y, ={l;,1,,13} . Then T =
{®' {1}' {3;4‘}; {1;2;4}; {1,3,4‘} Z} and E = {(Q' @), ({ml}ﬁ {11})' ({mZ}ﬁ {YZ})' (YIIYZ)}' Clearly Tis GT onZ
and ¢ is & from Y;to Y,. Now define F:(Z,7) - Y; XY, by F(1) = (m,,l,) = F(3)and F(2) =
(@,1,) = F(4). This shows that the inverse image of everyé-f3-closed set in (Yy, Y5, §) isT-B-closed set
in (Z,7). Hence F:(Z,T) - Y; XY, is §-B-Irresolute but not £-B-continuous, because F~1({m,},
{1,}) = {1,3}, where the set ({m,}, {l,}) is £-B-closed set but not é-closed in (Y, Y5, )
Example 5.3: In Example 5.2, F is £-[-generalized irresolute but not &-f-continuous because
F1({a,}, {b,}) = {1,3}, where the set ({a,}, {b,}) is &-B-generalized closed but not &-closed.
Example 5.4: In Example 5.1, F is &-3-generalized continuous but not &-B-irresloute because the set
{1,2} is T-B-generalized closed but not T-B-closed.
Example 5.5: In Example 5.2, F is &-[3-generalized irresolute but not &-[-irresolute because
F~1({az}, {b,}) = {1,3}, where the set ({a,}, {b,}) is &-B-generalized closed but not &-B-closed.
Relationships of Various & -continuous maps that we discussed in this section:

[0 Jomgi( 301 e [0

N

Figure-3
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6. Conclusion 9. Jamal M. Mustafa, On Binary Generalized
In this paper, a very useful concept ofé-f-continuouSopological Spaces, Refaad General Letters in
maps,totally £-f-continuous maps and strongly £- fMathematics, 2(3), 111-116 (2017).

continuous maps in &-topological spaces have b@eiuratowski, K., Topologie I, Warszawa, (1930).
introduced and established the relationships betivkehevine N. A decomposition of continuity in
these maps and some other maps. Further wtopological spaces. Am Math Mon, 68, 44-6,
introduced the concepts of &£-f-generalized close{1961).

sets,é-generalized [3-closed sets, £-B-generalized tapkevine, N. Semi open sets and semi continuity in
and &- B-irresolutes with the relationships of thestopological spaces, Amer. Math. Monthly, 70,
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