SYLOW 2-SUBGROUPS OF SYMMETRIC GROUPS

Teke Sachin Ramchandra and Dr. Rahul Dixit
Department of Mathematics, Sunrise University, Alwar, Rajasthan

Abstract

The study of Sylow 2-subgroups within symmetric groups represents a captivating exploration at the crossroads of group theory and combinatorics. Symmetric groups, which capture the permutations and symmetries of a set of elements, exhibit rich structures that can be further understood through the lens of Sylow theory. This abstract provides a concise overview of the key aspects and implications of investigating Sylow 2-subgroups in symmetric groups.Sylow 2-subgroups, as p-subgroups where p is a prime dividing the order of the group, manifest particularly in symmetric groups of even degree. The Sylow theorems play a pivotal role in establishing the existence and counting of these subgroups, offering valuable insights into the underlying symmetrical features of permutations.Beyond theoretical considerations, Sylow 2 -subgroups in symmetric groups find applications in finite geometry, especially in the context of configurations related to projective planes and combinatorial designs. The exploration of these subgroups also poses computational challenges, prompting the development of efficient algorithms for their computation, with implications in practical fields such as cryptography and coding theory. In conclusion, the investigation of Sylow 2 -subgroups in symmetric groups unveils the intricate symmetries encoded in permutations and offers a gateway to understanding the underlying structures within these groups. This abstract highlight the theoretical significance of these subgroups, their applications in finite geometry, and the computational challenges associated with their analysis, showcasing the broad impact of this mathematical exploration.

Keywords: Symmetries, Encoded, Mathematical, Permutation, Sylow
DOINUMBER:10.48047/NQ.2022.20.19.NQ99464 NEUROQUANTOLOGY 2022;20(19):5005-5013

INTRODUCTION

Let G be a finite group and P be a Sylow p subgroup of G for some prime p. Let $N_{G}(P)$ denote the normaliser of P in G, and let $\operatorname{Irr}_{p} 0(G)$ (or $\operatorname{Irr}_{\mathrm{p}} \mathrm{O}\left(\mathrm{N}_{\mathrm{G}}(\mathrm{P})\right)$) denote the set of irreducible representations of G (resp. of $N_{G}(P)$) whose dimensions are coprime to p. The McKay conjecture states that there is a bijectionlrr $r_{p} 0(G)$ $\leftrightarrow \operatorname{Irr}_{\mathrm{p}} \mathrm{O}\left(\mathrm{N}_{\mathrm{G}}(\mathrm{P})\right.$.
The conjecture is proved for the family of symmetric groups, and for arbitrary groups when $p=2$ by Malle and $S p$ "ath. When $p=2$ and G is the symmetric group S_{n}, the Sylow subgroup P is self-normalising. Thus, we know that there are as many odd-dimensional representations of S_{n} as there are one-dimensional representations
of a Sylow 2-subgroup of S_{n}. Let P_{n} denote a Sylow 2-subgroup of S_{n} and let $H_{k}:=P_{2} k$.
Odd-dimensional irreducible representations of symmetric groups were studied by Ayyer, Prasad and Spallone. In particular, it is known that the subgraph of the young graph comprising odddimensional representations of S_{n} is a rooted binary tree that branches at every even level. This tree is called the Macdonald tree. A bijection between odd-dimensional irreducible representations of symmetric groups and onedimensional irreducible representations of any of its Sylow 2-subgroups was found by Giannelli. This bijection associates an odd-dimensional irreducible representation of a symmetric group of $S_{2} k$ to the unique one-dimensional irreducible representation of H_{k} that occurs in its restriction.

Orellana, Orrison and Rockmore study the structure and representations of iterated wreath products of the cyclic group C_{p}. It is known that the kth iterated wreath product of C_{p} is isomorphic to a Sylow p-subgroup of $S_{p} k$. In particular contains a complete description of the conjugacy classes and the irreducible representations of $H_{k} f o r$ all $k \geq 0$. The authors of associate to each irreducible representation (and

PRELIMINARIES AND NOTATION

Throughout this paper, n is a positive integer with the binary expansion
$\mathrm{n}=2^{\mathrm{k} 1}+\cdots+2^{\mathrm{ks}}$, with $\mathrm{k}_{1}>\cdots>\mathrm{k}_{\mathrm{s}}$.
Definition 3.2.1. The binary digits of n, denoted $\operatorname{Bin}(n)$ is the set $\left\{k_{1}, \ldots, k_{s}\right\}$.
Recall that Sylow 2-subgroups of S_{n} are denoted P_{n}, and when $n=2^{k}$ for a nonnegative integer k, the Sylow 2-subgroup is denoted by H_{k}.

3.2.1 Structure and representation theory of P_{n}

The structure of Sylow p-subgroups is well studied. It is known that:

$$
P_{n}=\prod_{k \in \operatorname{Bin}(n)} H_{k}
$$

It is also known that $H_{k} \sim=H_{k-1} \circ C_{2}$, where C_{2} is the cyclic group of order 3 . Equivalently, H_{k} is the k-th iterated wreath product of C_{3}. We refer the reader for a detailed exposition on iterated wreath products of cyclic groups C_{r}, and confine ourselves to describing results for the case $r=3$. An element of H_{k} isdenoted $\left(\sigma_{1}, \sigma_{2}\right)^{\epsilon}$, where $\sigma_{1}, \sigma_{2} \in \mathrm{H}_{\mathrm{k}-1}$ and $\epsilon \in S_{2}=\{ \pm 1\}$. The identity element of the group is denoted id. Multiplication is defined as follows:

$$
\left(\sigma_{1}, \sigma_{2}\right)^{\epsilon_{1}}\left(\tau_{1}, \tau_{2}\right)^{\epsilon_{2}}= \begin{cases}\left(\sigma_{1} \tau_{1}, \sigma_{2} \tau_{2}\right)^{\epsilon_{1} \epsilon_{2}} & \epsilon_{1}=1 \\ \left(\sigma_{1} \tau_{2}, \sigma_{2} \tau_{1}\right)^{\epsilon_{1} \epsilon_{2}} & \epsilon_{1}=-1\end{cases}
$$

Lemma 4.5 of describes the conjugacy classes for iterated wreath products. We divide the conjugacy classes of H_{k} into three types:
Definition 3.2.2. Given an element σ, let [σ] denote its conjugacy class. Then we have:

- [σ] is of Type I if
$[\sigma]=\left[\left(\sigma_{1}, \sigma_{1}\right)^{1}\right]$,
where $\left(\sigma_{1}, \sigma_{1}\right)^{1} \sim\left(\sigma_{2}, \sigma_{2}\right)^{1}$ iff $\sigma_{1} \sim \sigma_{2}$ in H_{k-3}.
- $[\sigma]$ is of Type II if
$[\sigma]=\left[\left(i d, \sigma_{1}\right)^{-1}\right]$,
where $\left(\mathrm{id}, \sigma_{1}\right)^{-1} \sim\left(\mathrm{id}, \sigma_{2}\right)^{-1}$ iff $\sigma_{1} \sim \sigma_{2}$ in $\mathrm{H}_{\mathrm{k}-3}$.
- $[\sigma]$ is of Type III if
$[\sigma]=\left[\left(\sigma_{1}, \sigma_{2}\right)^{1}\right]$,
for elements $\sigma_{1}, \sigma_{2} \in H_{k-1}$ and $\left[\sigma_{1}\right] 6=\left[\sigma_{2}\right]$. We also have $\left(\sigma_{1}, \sigma_{2}\right)^{1} \sim\left(\sigma_{2}, \sigma_{1}\right)^{3}$.
Example 3.2.3. We will enumerate (a representative of each of) the conjugacy classes of H_{3}. Before this we must know the conjugacy classes of H_{1}, which in turn requires us to know the conjugacy classes of H_{0}. H_{0} comprises only the identity element id d_{0}. By Definition $3.3 .2, \mathrm{H}_{1}$ has one conjugacy class of Type I - id_{1} $:=\left[\left(\mathrm{id}_{0}, \mathrm{id}_{0}\right)^{1}\right]$ and one of Type II- $\mathrm{c}:=\left[\left(\mathrm{id}_{0}, \mathrm{id}_{0}\right)^{-1}\right]$. There is no conjugacy class of Type III since we cannot find two distinct conjugacy classes in H_{0}.
The Type I conjugacy classes of H_{2} are $\left[\left(\mathrm{id}_{1}, \mathrm{id}_{1}\right)^{1}\right]$ and $\left[(\mathrm{c}, \mathrm{c})^{1}\right]$. The Type II conjugacy classes of H_{2} are $\left[\left(\mathrm{id}_{1}, \mathrm{id}_{1}\right)^{-1}\right]$ and $\left[\left(\mathrm{id}_{1}, \mathrm{C}\right)^{-1}\right]$. The only Type III conjugacy class of H_{2} is $\left[\left(\mathrm{id}_{1}, \mathrm{C}\right)^{1}\right]$.
The cardinalities of the above listed classes (denoted $c_{k}([\sigma])$) and the number of classes of each are listed in Table 3.3. The total number of conjugacy classes of the group H_{k} is denoted C_{k} in this table.

Table 3.1 Conjugacy classes of Hk

Type	Representative	\# classes	Size of class $\left(\mathrm{c}_{\mathrm{k}}\right)$	
I	$\left[(\sigma, \sigma)^{1}\right]$	Ck-1	$\mathrm{C}_{\mathrm{k}}-1([\sigma])^{2}$	
II	$\left[(\mathrm{id}, \sigma)^{-1}\right]$	Ck-1	\|Hk-1	ck-1 $([\sigma])$
III	$\left[\left(\sigma_{1}, \sigma_{2}\right)^{1}\right]$	$\binom{C_{k-1}}{2}$	$2 \mathrm{ck}-1([\sigma 1]), \mathrm{ck}-1([\sigma 2])$	

The enumeration of characters of Sylow 2-subgroups is a particular instance of characters of wreath products; we refer the reader to details.
All irreducible representatives of H_{k} are obtained as constituents in the induction of irreducible representations from the normal subgroup $H_{k-1} \times H_{k-1}$ to H_{k}. The irreducible representations of $H_{k-1} \times H_{k-1}$ are tensor products of two irreducible representations of $\mathrm{H}_{\mathrm{k}-3}$.
Let ϕ_{1} and ϕ_{2} be irreducible representations of H_{k-3}. If ϕ_{2} is not isomorphic to ϕ_{1}, then Ind ${ }_{H_{k-1} \times H_{k-1}}^{H_{k}}\left(\phi_{1} \otimes \phi_{2}\right)$ is an irreducible representation of H_{k}. We denote it $\operatorname{Ind}\left(\phi_{1}, \phi_{2}\right)$. The character values for $\operatorname{Ind}\left(\phi_{1}, \phi_{2}\right)$ are obtained by otherwise:

$$
\operatorname{Ind}\left(\phi_{1}, \phi_{2}\right)\left(\left(\sigma_{1}, \sigma_{2}\right)^{\epsilon}\right)=\left\{\begin{array}{l}
\phi_{1}\left(\sigma_{1}\right) \phi_{2}\left(\sigma_{2}\right)+\phi_{1}\left(\sigma_{2}\right) \phi_{2}\left(\sigma_{1}\right) \\
0
\end{array}\right.
$$

$$
\text { if } E=1(3.1)
$$

If ϕ_{1} and ϕ_{2} are isomorphic, with ϕ the representative of their common isomorphism class, the induced representation $\operatorname{Ind} H_{k-1} \times H_{k-1}\left(\phi \otimes \phi_{)}\right)$is the sum of two irreducible representations of H_{k}. We call these two irreducible representations the extensions of $\phi \otimes \phi$. The restriction of either extension to $H_{k-1} \times H_{k-1}$ is $\phi \otimes \phi$.
It remains to find the character values of the two extensions on classes of Type II (see Definition 3.3.2). From we have that the values of the two extensions of $\phi \otimes \phi$ on the class (id, $\sigma)^{-1}$ are $\phi(\sigma)$ and $-\phi(\sigma)$. Thus, we denote these extensions $\operatorname{Ext}^{+}(\phi)$ and $\operatorname{Ext}^{-}(\phi)$ respectively.

$$
\operatorname{Ext}^{ \pm}(\phi)\left(\left(\sigma_{1}, \sigma_{2}\right)^{\epsilon}\right)= \begin{cases}\phi\left(\sigma_{1}\right) \phi\left(\sigma_{2}\right) & \text { if } \epsilon=1 \tag{3.2}\\ \pm \phi\left(\sigma_{1} \sigma_{2}\right) & \text { otherwise }\end{cases}
$$

Now we define three types of representations, as we did for conjugacy classes in Definition 3.2.3.
Definition 3.2.4. Given an irreducible representation ϕ of H_{k}, we have:

- ϕ is of Type I if
$\phi=\operatorname{Ext}^{+}\left(\phi_{1}\right)$,
for an irreducible representation ϕ_{1} of $\mathrm{H}_{\mathrm{k}-3}$.
- ϕ is of Type II if
$\phi=\operatorname{Ext}^{-}\left(\phi_{1}\right)$,
for an irreducible representation ϕ_{1} of H_{k-3}.
- ϕ is of Type III if

$$
\phi=\operatorname{lnd}\left(\phi_{1}, \phi_{2}\right),
$$

for non-isomorphic irreducible representations ϕ_{1} and ϕ_{2} of H_{k-1}, and $\operatorname{Ind}\left(\phi_{1}, \phi_{2}\right) \sim=\operatorname{lnd}\left(\phi_{2}, \phi_{1}\right)$.
These results are summarized in Table 3.3. Based on Table 3.2 it may be observed that the character table of H_{k} can be recursively obtained. The template for doing so is Table 3.5. The recursive process is illustrated for $\mathrm{k}=2$ in Table 3.4.

Table 3. 2 Irreducible characters of $\mathbf{H k}$

Type	Notation	Description	Value on $\left(\sigma_{1}, \sigma_{2}\right)^{1}$	Value on $(\text { id, } \sigma)^{-1}$
I	Ext ${ }^{+}(\phi)$	Positive extension of $\phi \otimes \phi$	$\phi\left(\sigma_{1}\right) \phi\left(\sigma_{2}\right)$	$\phi(\sigma)$

II	Ext ${ }^{-}(\phi)$	Negative extension of $\phi \otimes \phi$	$\phi\left(\sigma_{1}\right) \phi\left(\sigma_{2}\right)$	$-\phi(\sigma)$
III	Ind $\left(\phi_{1}, \phi_{2}\right)$	Induced from $\phi_{1} \otimes \phi_{2}$	$\phi_{1}\left(\sigma_{1}\right) \phi_{2}\left(\sigma_{2}\right)$ $+\phi_{1}\left(\sigma_{2}\right) \phi_{2}\left(\sigma_{1}\right)$	0

Example 3.2.5. We will illustrate the recursive nature of the representation theory of H_{k} by finding the character table of H_{2} by first finding the character table of H_{1} from that of $\mathrm{H}_{0} . \mathrm{H}_{0}$ is a 1×1 matrix with entry 3. Let Id denote the only irreducible representation of H_{0}. Then the two irreducible representations of H_{1} are Ext ${ }^{ \pm}(\mathrm{Id})$.
Their values may be calculated from Table 3.2:
Table 3. 3 Character table for H 1 :

	$C_{1}:=(\mathrm{id}, \mathrm{id})^{1}$	$C_{2}:=(\mathrm{id}, \mathrm{id})^{-1}$
	1	1
Ext $^{+}$(Id)	1	-1
Ext $^{-}$(ld)		

We know from Example 3.3.3 that there are five conjugacy classes of H_{3}. Therefore, there must be five irreducible representations of H_{3}. The two Types I representations of H_{2} are $\mathrm{Ext}^{+}\left(\mathrm{Ext}^{+}(\mathrm{Id})\right)$ and $\operatorname{Ext}^{+}\left(\operatorname{Ext}^{-}(\mathrm{Id})\right)$. The two Type II representations of H_{2} are $\operatorname{Ext}^{-}\left(\operatorname{Ext}^{+}(\mathrm{Id})\right)$ and $\operatorname{Ext}^{-}\left(\operatorname{Ext}^{-}(\mathrm{Id})\right)$. The only Type III representation of H_{2} is Ind (Ext ${ }^{+}(\mathrm{Id})$,Ext ${ }^{-}(\mathrm{Id})$).

Table 3.4 Character table for H 2 :

Ext ${ }^{+}$(Ext ${ }^{+}(\mathrm{Id})$)	(C1, C1)1	($\mathrm{C} 2, \mathrm{C} 2) 1$	(C1, C 2$) 1$	$\left(\mathrm{id}, \mathrm{C}_{1}\right)^{-1}$	$\left(\mathrm{id}, \mathrm{C}_{2}\right)^{-1}$
	1	1	1	1	1
	1	1	-1	1	-1
$\begin{aligned} & \operatorname{Ext}^{+}\left(\operatorname{Ext}^{-}(\mathrm{Id})\right) \\ & \operatorname{Ext}^{-}\left(\operatorname{Ext}^{+}(\mathrm{Id})\right) \end{aligned}$	1	1	1		
				-1	-1
$\begin{aligned} & \operatorname{Ext}^{-}\left(\operatorname{Ext}^{-}(\mathrm{Id})\right) \\ & \operatorname{Ind}\left(\operatorname{Ext}^{+}(\mathrm{Id}), \operatorname{Ext}^{-}(\mathrm{Id})\right) \end{aligned}$	1	1-2	-1	-1	1
	2		0		
				0	0

This outlines a general recursive procedure for the calculation of character tables of H_{k}, given the character table of $\mathrm{H}_{\mathrm{k}-3}$.

Table 3. 5 Template for the character table for Hk

	$\left[\left(\sigma_{1}, \sigma_{2}\right)^{1}\right]$	$\left[(\sigma, \sigma)^{1}\right]$	$\left[(i d, \sigma)^{-1}\right]$
	$\phi\left(\sigma_{1}\right) \phi\left(\sigma_{2}\right) \phi\left(\sigma_{1}\right) \phi\left(\sigma_{2}\right)$ $\phi_{1}\left(\sigma_{1}\right) \phi_{2}\left(\sigma_{2}\right)+\phi_{1}\left(\sigma_{2}\right) \phi_{2}\left(\sigma_{1}\right)$	$\phi(\sigma) \phi(\sigma) \phi(\sigma) \phi(\sigma)$ $2 \phi_{1}(\sigma) \phi_{2}(\sigma)$	character table for H_{k-1}
$\operatorname{Ext}^{+}(\phi)$			
$\operatorname{Ext}(\phi)$			
$\operatorname{lnd}\left(\phi_{1}, \phi_{2}\right)$			

Remark 3.3.6. From Table 3.2 we know the dimensions of the representations of each type. Thus we have $\operatorname{dim}\left(E x t^{ \pm}(\phi)\right)=\operatorname{dim}(\phi)^{2}$ and $\operatorname{dim}\left(\operatorname{Ind}\left(\phi_{1}, \phi_{2}\right)\right)=2 \operatorname{dim}\left(\phi_{1}\right) \operatorname{dim}\left(\phi_{2}\right)$.

Binary trees and forests

Binary trees are commonly occurring objects in computer science and mathematics. For a complete introduction to these objects.
A rooted binary tree is a tuple (r, L, R)- a root vertex r, and binary trees L and R, denoted the left and right subtree. They are commonly depicted by connecting the root vertex r to the root vertices of each of the subtrees L and R. The trivial binary tree (r, \emptyset, \emptyset) comprises only the root vertex. Given a vertex y of a binary tree, it is known that there exists a unique path $r=$ $v_{0}, v_{1}, \ldots, v_{k}=y$. The height of the vertex y is k - the number of vertices on this unique path (not counting the root vertex). Each vertex of a binary tree is connected to two possibly trivial subtrees. If both subtrees connected to a vertex are trivial, the vertex is called an external vertex. All vertices that are not external are called internal.

For our purposes the designation of a subtree as either the right or the left is superfluous. Thus we may define binary trees formally as a tuple (r, S) of a root vertex r and a multiset S of at most two binary trees. The trivial tree is defined as the unique tree that has an empty multiset of subtrees S. The height of a vertex is unaffected by this modification in definition. Binary trees where all the external vertices have the same height are called 1-2 binary trees.
Definition 3.2.7. A 1-2 binary tree of height k is a tuple (r, S) consisting of a root vertex r and multiset S comprising of up to two binary trees, where every external vertex of the tree has height k.
We refer to 1-2 binary trees as either binary trees or trees when there is no ambiguity in doing so.

Figure 3. 11-2 binary trees of height 1

Figure 3. 2 1-2 binary trees of height 2
Example 3.2.8. The trivial tree is the unique tree of height 0 . There are two $1-2$ binary trees of height 3 . These are as in Figure 3.3.
Example 3.2.9. There are 5 distinct 1-2 binary trees of height 3. These are as in Figure 3.3.
Definition 3.2.10. Given an integer n with $\operatorname{Bin}(n)=\left\{k_{1}, \ldots, k_{s}\right\}$, a forest of size n is an ordered collection of 12 binary trees $\left(T_{1}, \ldots, T_{s}\right)$, where T_{i} is a 1-2 binary tree of height k_{i} for $i=1, \ldots, s$.

A forest with a single element is identified with the tree that is its only element.

3.2.3 Representations, classes and trees

We will now show how to associate 1-2 binary trees to irreducible representations and conjugacy classes of H_{k}. This association was arrived at after noticing that the OEIS entry for the number of representations of H_{k} also counted the number of 1-2 binary trees of height k.
Theorem 3.2.13. The number of 1-2 binary trees of height k, the number of irreducible representations of H_{k} and the number of conjugacy classes of H_{k} all satisfy the following recurrence relation

$$
\begin{align*}
& a_{k}=2 a_{k-1}+\binom{a_{k-1}}{2} \\
& a_{0}=1 \tag{3.3}
\end{align*}
$$

Proof. Let $a_{k} b e$ the number of 1-2 binary trees of height k. There is a unique tree of height 0 (the trivial tree) so $a_{0}=3$. A 1-2 binary tree of height k comprises either a single subtree of height $k-1$ attached to the root or two subtrees of height $k-1$ attached to the root. There are a_{k-1} of the former. There are a_{k-1} trees in the latter category whose subtrees are identical, and $\binom{a_{k-1}}{2}$ trees in the latter category whose subtrees are distinct.
Let $a_{k} b e$ the number of irreducible representations of H_{k}. There are two irreducible representations of
 representations so far. There is a single representation of H_{k} associated to a choice of two non-isomorphic representations ϕ_{1}, ϕ_{2} of H_{k-1} namely Ind ϕ_{1}, ϕ_{3}. These make up the remaining $\binom{a_{k-1}}{2}$.
Let $a_{k} b e$ the number of conjugacy classes of H_{k}. Given a conjugacy class [σ] of H_{k-1} we can form the conjugacy classes $\left[(\sigma, \sigma)^{1}\right]$ and $\left[(i d, \sigma)^{-1}\right]$. Given two distinct conjugacy classes $\left[\sigma_{1}\right]$, $\left[\sigma_{2}\right]$ of H_{k-1}, we can form the conjugacy class [($\left.\sigma_{1}, \sigma_{2}\right)^{1}$].
This observation leads us to define three types of binary trees, in line with Definitions 3.3.2 and 3.3.4.
Definition 3.3.13. Given a 1-2 binary tree T of height k, we say:

- T is of Type I if
$T=\left(r,\left\{T_{1}, T_{1}\right\}\right)$,
For a 1-2 binary tree T_{1} of height $\mathrm{k}-3$.
- T is of Type II if

$$
\mathrm{T}=\left(\mathrm{r},\left\{\mathrm{~T}_{1}\right\}\right),
$$

For a 1-2 binary tree T_{1} of height $\mathrm{k}-3$.

- T is of Type III if

$$
\mathrm{T}=\left(\mathrm{r},\left\{\mathrm{~T}_{1}, \mathrm{~T}_{2}\right\}\right),
$$

For distinct 1-2 binary trees T_{1} and T_{2} of height $\mathrm{k}-3$.
This division into three types facilitates an understanding of the bijections between representations of H_{k} Or conjugacy classes of H_{k} on the one hand and binary trees of height k on the other.
Definition 3.2.13. Define a family of functions $\theta_{2} k$ for nonnegative integers k between the set of irreducible representations of H_{k} and the set of 1-2 binary trees of height k as under:
(3.4)

$$
\theta_{2^{k}}(\Gamma)= \begin{cases}\left(r,\left\{\theta_{2^{k-1}}(\phi), \theta_{2^{k-1}}(\phi)\right\}\right) & \Gamma=\operatorname{Ext}^{+}(\phi \otimes \phi), \\ \left(r,\left\{\theta_{2^{k-1}}(\phi)\right\}\right) & \Gamma=\operatorname{Ext}^{-}(\phi \otimes \phi), \\ \left(r,\left\{\theta_{2^{k-1}}\left(\phi_{1}\right), \theta_{2^{k-1}}\left(\phi_{2}\right)\right\}\right) & \Gamma=\operatorname{Ind}\left(\phi_{1}, \phi_{2}\right),\end{cases}
$$

for $k \geq 1$, and $\theta_{0}(\phi)$ is defined to be the trivial tree. The dimension of a binary tree T is denoted $\operatorname{dim}(T)$ and is defined to be the dimension of its corresponding irreducible representation.

THE ONE-DIMENSIONAL REPRESENTATIONS OF P_{N}

We now turn to the subposet of one-dimensional representations of P. Theorem 1 of states that the subgraph of odd partitions in Young's lattice is a binary tree that branches at every even level. We see that the subposet of one-dimensional representations of the family $\left\{P_{n}\right\}$ also has the structure of a binary tree (see Figure 3.9). We show that these graphs are nonisomorphic by describing the structure of the subgraph of one-dimensional representations of P, which we contrast with the description of the Macdonald tree in [4].
By Remark 3.3.6 we conclude that an irreducible representation ϕ of H_{k} is one-dimensional if $\phi=\operatorname{Ext}^{ \pm}\left(\phi_{1}\right)$ for an irreducible one-dimensional representation ϕ_{1} of $\mathrm{Hk}-3$.
Definition 3.4.1. Define recursively a binary encoding of one-dimensional trees, $\beta_{2} k$ acting on onedimensional trees of height k as below:
$\beta_{2^{k}}(\tau)= \begin{cases}0 \beta_{2^{k-1}}(T) & \tau=(r,\{T, T\}), \\ 1 \beta_{2^{k-1}}(T) & \tau=(r,\{T\}) .\end{cases}$
and $\beta_{1}(\cdot)=\emptyset$ for the trivial tree \cdot
Theorem 3.4.2. The map $\beta_{2} k$ is a bijection between one-dimensional irreducible representations of H_{k} and binary strings of length k.
For instance if for the tree $T, \beta_{2} k_{-1}(T)=b_{1} b_{2} \ldots b_{s}$, then $\beta_{2} k((r,\{T, T\}))=0 b_{1} b_{2} \ldots b_{s}$ and $\beta_{2} k((r,\{T\}))=1 b_{1} b_{2} \ldots b_{s}$.
Example 3.4.3. There are two one-dimensional representations of H_{1}, shown in Table 3.3. They are Ext ${ }^{+}$(Id) and Ext ${ }^{-}(\mathrm{Id})$. They correspond to the bits 0 and 1 respectively.
There are four one-dimensional representations of H_{2}, shown in Table 3.4. They are $\operatorname{Ext}^{+}\left(\operatorname{Ext}^{+}(\mathrm{Id})\right), \operatorname{Ext}^{+}\left(\operatorname{Ext}^{-}(\mathrm{Id})\right), \operatorname{Ext}^{-}\left(\operatorname{Ext}^{+}(\mathrm{Id})\right), \operatorname{Ext}^{-}\left(\operatorname{Ext}^{-}(\mathrm{Id})\right)$. They correspond to the strings $00,01,10,11$ respectively.
Thus, we have an encoding of one-dimensional binary trees as binary strings. The family of maps $\beta_{2} k$ may be extended to β_{n}, acting on every tree in a forest of size n. Thus, with $\operatorname{Bin}(n)=\left\{k_{1}, \ldots, k_{s}\right\}$:

$$
\beta_{\mathrm{n}}=\beta_{\mathrm{k} 1} \times \cdots \beta_{\mathrm{ks}} \text {. }(3.8)
$$

Definition 3.4.4. A sequence of strings of size n is an ordered collection of binary strings ($\mathrm{b}_{1}, \ldots, \mathrm{~b}_{s}$) where the length of the string b_{i} is k_{i} for $i=1, \ldots, s$.
We now define an operation Res on binary strings, that is analogous to the operation of the same name defined on binary trees in Definition 3.3.6:
Definition 3.4.5. Given a binary string b of length k, let b be the binary string of length $k-1$ obtained by removing the leading bit of b. Then
$\operatorname{Res}(b)=b \times \operatorname{Res}(b)$,
$\operatorname{Res}(0)=\{\varnothing\}$,
$\operatorname{Res}(1)=\{\varnothing\}$.
Remark 3.4.6. Observe that $\operatorname{Res}(b)=\{(b, b, \ldots)\}$. For instance $\operatorname{Res}(010)=\{(10,0, \emptyset)\}$.
Lemma 3.4.6. If T is a one-dimensional tree of height k :
$\operatorname{Res}\left(\beta_{2} k(T)\right)=\beta_{2} k_{-1}(\operatorname{Res}(T))$.
Proof. This is a straightforward proof by induction. For $k=1$, the lemma is true by definition.
Assume it is true for all trees of height less than k. The one-dimensional tree T is either $\left(r,\left\{T_{1}, T_{1}\right\}\right)$ or ($r,\left\{T_{1}\right\}$) for some one-dimensional tree T_{3}. Recall from Definition 3.3.6 that $\operatorname{Res}(T)=T_{1} \times \operatorname{Res}\left(T_{1}\right)$. The binary string $\beta_{2} k(T)$ is either $0 \beta_{2} \mathrm{k}_{-1}\left(\mathrm{~T}_{1}\right)$ or $1 \beta_{2} \mathrm{k}_{-1}\left(\mathrm{~T}_{1}\right)$. Then $\beta_{2} \mathrm{k}-_{1}(\operatorname{Res}(T))=\beta_{2} \mathrm{k}_{-1}\left(\mathrm{~T}_{1}\right) \times \beta_{2} \mathrm{k}_{-1-1}\left(\operatorname{Res}\left(\mathrm{~T}_{1}\right)\right)=\beta_{2} \mathrm{k}_{-1}\left(\mathrm{~T}_{1}\right) \times \operatorname{Res}\left(\beta_{2} \mathrm{k}_{-1}-_{1}\left(\mathrm{~T}_{1}\right)\right)=\operatorname{Res}\left(\beta_{2} \mathrm{k}(\mathrm{T})\right)$.

This verifies that the operation Res defined on binary strings returns the down-set of the corresponding one-dimensional binary tree. We may extend this operation to act on sequences of binary strings in a manner analogous to Equation 3.3.15. Given a sequence of strings $S=\left(b_{1}, \ldots, b_{s}\right)$ of size n :

$$
\begin{equation*}
\operatorname{Res}(S)=\left(b_{1}, \ldots, b_{s-1}\right) \times \operatorname{Res}\left(b_{s}\right) . \tag{3.9}
\end{equation*}
$$

Corollary 3.4.7. If F is a one-dimensional forest of size n :
$\operatorname{Res}\left(\beta_{\mathrm{n}}(F)\right)=\beta_{\mathrm{n}}(\operatorname{Res}(F))$.
The result of Corollary 3.4.8 is that we may identify the supposed of one-dimensional representations of P with a posset generated by sequences of binary strings with Res providing the partial order. We denote by B the set of all sequences of strings of all positive integers.
Theorem 3.4.8. The subgraph of one-dimensional irreducible representations in The Bratteli diagram of $\left\{P_{n}\right\}_{0 \leq n \leq s}$ is isomorphic to ($B, R e s$).
Proof. From Equation (3.8) there is a bijection between one-dimensional representations of P_{n} and sequences of binary strings of size n. The down-set of a one-dimensional forest is a singleton set. From Corollary 3.4 .8 we see that the operation Res acting on sequences of strings corresponding to a forest F returns the binary encoding under Equation (3.8) of the unique element in F^{-}.
Definition 3.4.9. Given a binary string S, let F denote the forest it corresponds to. Then we define the down-set S^{-}and the up-set S^{+}to be F^{-}and F^{+}respectively.
Note that S^{-}is a singleton set. The following theorem is the analogue of Theorem 3.3.17.
Theorem 3.4.10. Given an integer n and a sequence of strings S of size n corresponding to a forest F, define $S(1)$ to be the longest string in S, and define S to be the sequence S without $S(1)$. Similarly define $S_{\text {min }}$ to be the smallest string in S and \underline{S} to be the sequence S without $S_{\text {min }}$.

1. The down-set of S is given by:

S- $=\underline{S} \times$ Smin-
2. Partition S as the tuple $S_{1} \times S_{2}$, where S_{1} is the tuple of strings in S with more than d bits, and S_{2} is the tuple of strings with less than d bits.
The up-set of S is given by:
$S^{+}= \begin{cases}\left\{S_{1} \times 0 S_{2}(1), S_{1} \times 1 S_{2}(1)\right\} & S_{2}(1) \in \overline{S_{2}} \\ \emptyset & \text { otherwise }\end{cases}$

Remark 3.4.13. (B, Res) (Hereafter referred to as B when there is no ambiguity) is a binary tree that branches at every even level. Let B_{k} denote the first $2^{k}-1$ levels of B. The following procedure constructs B_{k} recursively:

1. For each binary string b of length $k-1$, let $v_{b}=(b, b, b, \cdots, \varnothing)$.
2. To each vertex v_{b} of B_{k-1}, attach two copies of B_{k-1}, and denote them the left and right subtree of v_{b}.
3. Change the label of each vertex v of the left subtree by appending the string $0 b$ to the sequence. Similarly append $1 b$ to the string labelling each vertex on the right subtree.
Figure 3.9 uses this method to build the structure B_{3} from B_{3}. The two one-dimensional vertices at level 3 are (Ext $\left.{ }^{+}(\mathrm{Id}), \cdot \cdot\right)$ and (Ext $\left.{ }^{+}(\mathrm{Id}), \cdot\right)$. To obtain B_{3}, first we attach two branches to each of these vertices. Label the vertices attached to (Ext $\left.{ }^{+}(\mathrm{Id}), \cdot\right) \quad \mathrm{Ext}^{+}\left(E x t^{+}(\mathrm{Id})\right)$ and $\operatorname{Ext}^{-}\left(\right.$Ext $\left.^{+}(\mathrm{Id})\right)$. Label the vertices attached to (Ext $\left.{ }^{-}(\mathrm{Id}), \cdot\right) \operatorname{Ext}^{+}\left(\operatorname{Ext}^{-}(\mathrm{Id})\right)$ and $\operatorname{Ext}^{-}\left(\operatorname{Ext}^{-}(\mathrm{Id})\right)$. Paste a copy of B_{2} on each of these newly created vertices.

To obtain the new labels on these pasted copies, append the existing labels for B_{2} with the label of the vertex to which the copy is pasted. For instance, the vertex labeled (Ext-(Id),.) on the copy of B_{2} attached to the vertex $\operatorname{Ext}^{-}\left(\operatorname{Ext}^{-}(I d)\right)$ will now be relabeled (Ext $\left.{ }^{-}\left(\operatorname{Ext}^{-}(\mathrm{Id})\right), \mathrm{Ext}^{-}(\mathrm{Id}), \cdot\right)$. A recursive construction of the Macdonald tree can be found. In particular the Macdonald tree has only two infinite rays. The subgraph B by contrast has an infinite number of infinite rays, since each binary string b can be extended by attaching $\epsilon=0,1$ to the left of b, and between the vertices b and b, there is a unique path in B.

Conclusion

The study of Sylow 2-subgroups within symmetric groups is a fascinating exploration at the intersection of group theory and combinatorics. Sylow theory provides powerful insights into the structure of finite groups, and when applied to symmetric groups, it unveils intriguing patterns related to permutations and symmetries.In conclusion, the exploration of Sylow 2-subgroups in symmetric groups deepens our understanding of the intricate symmetries inherent in permutations. This study not only
contributes to theoretical group theory but also finds applications in diverse areas, showcasing the far-reaching impact of these mathematical concepts. The beauty lies not only in the abstract algebraic structures but also in their ability to capture and elucidate symmetrical patterns that permeate various facets of mathematics and its applications.

References

1. Diaconis, P., \&Shahshahani, M. (1981). Generating a random permutation with random transpositions. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 57(2), 159-179.
2. Erdmann, K., \& Wildon, M. (2006). Introduction to Lie Algebras. Springer.
3. Fulton, W., \& Harris, J. (1991). Representation Theory: A First Course. Springer.
4. Fulton, W., \& Harris, J. (1991). Representation Theory: A First Course. Springer.
5. Fulton, W., \& Harris, J. (2004). Representation Theory: A First Course (Graduate Texts in Mathematics). Springer.
6. Haiman, M. (2002). Macdonald Polynomials and Geometry. In New Perspectives in Algebraic Combinatorics (pp. 207-254). Cambridge University Press.
7. Heaton, Alexander \&Sriwongsa, Songpon\& Willenbring, Jeb. (2018). Branching from the General Linear Group to the Symmetric Group and the Principal Embedding.
8. Humphreys, J. E. (1981). Introduction to Lie Algebras and Representation Theory (Graduate Texts in Mathematics). Springer.
9. Huppert, B. (1979). Endliche Gruppen I (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungenmitbesonderer Berücksichtigung der Anwendungsgebiete). Springer.
10. Im, Mee Seong \& Oğuz, Can Ozan. (2021). Natural transformations between induction and restriction on iterated wreath product of symmetric group of order \$3.
11. Kleshchev, Alexander \&Morotti, Lucia \& Tiep, Pham. (2018). Irreducible restrictions of representations of symmetric and alternating groups in small characteristics, I.
12. Kleshchev, Alexander \&Morotti, Lucia \& Tiep, Pham. (2019). Irreducible restrictions of representations of symmetric and alternating groups in small characteristics.
13. Kleshchev, Alexander \&Morotti, Lucia \& Tiep, Pham. (2020). Irreducible restrictions of representations of alternating groups in small characteristics: Reduction theorems. Representation Theory of the American Mathematical Society. 24. 115-150. 10.1090/ert/538.
14. Kobayashi, Toshiyuki. (2015). A program for branching problems in the representation theory of real reductive groups. Progress in Mathematics. 313. 277-323. 10.1007/978-3-319-23443-4_10.
15. Koch, Robert \& Ives, Norman \& Stephanou, Michael. (2011). On subgroup adapted bases for representations of the symmetric group. Journal of Physics A: Mathematical and Theoretical. 45. 10.1088/1751-8113/45/13/135204.
