SQUARE HARMONIC MEAN LABELING OF DISCONNECTED GRAPHS

L. S. Bebisha Lenin ${ }^{1}$, M. Jaslin Melbha ${ }^{2}$
${ }^{1}$ Research Scholar, Department of Mathematics, Women's Christian College, Nagercoil-629001, Tamil Nadu, India
${ }^{2}$ Assistant Professor, Department of Mathematics, Women's Christian College, Nagercoil-629001, Tamil Nadu, India Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012. E-mail: ${ }^{1}$ bebishalenin8497@gmail.com, ${ }^{2}$ mjaslinmelbha@gmail.com

Abstract

If there is an injective function $h: V(G) \rightarrow\{1,2, \ldots, q+1\}$ such that an induced edge function $h^{*}: E(G) \rightarrow\{1,2, \ldots, q\}$ defined by $h^{*}(e=u v)=\left\lceil\frac{2 h(u)^{2} h(v)^{2}}{h(u)^{2}+h(v)^{2}}\right\rceil$ or $\left\lfloor\frac{2 h(u)^{2} h(v)^{2}}{h(u)^{2}+h(v)^{2}}\right\rfloor$ is bijective, thena graph $G=(V, E)$ with p vertices and q edges is called a square harmonic labeling. A graph which admits a square harmonic mean labeling is called a square harmonic mean graph.

The union of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is a graph $G=G_{1} \cup G_{2}$ with vertex set $V=V_{1} \cup V_{2}$ and edge set $E=E_{1} \cup E_{2}$. In this paper, we introduced square harmonic mean labeling of disconnected graphs. Keywords. Graphs, Disconnected graphs, square harmonic mean graph.

DOI Number: 10.48047/nq.2022.20.19.nq99516
Neuroquantology 2022; 20(19):5373-5378

1.Introduction

All graphs considered here are simple, finite, connected and undirected graph. Graph labeling plays an important role in graph theory. A graph labelling is an assignment of integers to the vertices, edges or both of a graph with certain conditions. We cite J. A. Gallian [1] for an extensive examination of graph labeling. We adhere to Harary's [2]
conventions for all other terms and notations. S. Somasundaram, R. Ponraj and S.S. Sandhya [4] established the notion of harmonic mean labeling. The aforementioned studies served as our inspiration as we introduced square harmonic mean labeling and also investigate square harmonic mean labeling behaviour of some simple graphs.

Definition 1.1. Pathrefers to a walk where each of the vertices $u_{0}, u_{1}, \ldots, u_{n}$ are distinct. A path on n vertices is denoted by P_{n}.
Definition 1.2. Cycle of G refers to a closed path. The symbol C_{n} stands for a cycle on n vertices.
Definition 1.3. The graph $G=G_{1} \cup G_{2}$ formed by taking one copy of G_{1} and $V\left(G_{1}\right)$ copies of G_{2}, where the $i^{\text {th }}$ vertex of G_{1} is next to every vertex in the $i^{\text {th }}$ copy of G_{2} is known as the corona $G_{1} \odot$ G_{2} of two graphs G_{1} and G_{2}.
Definition 1.4. Combrefers to the graph formed by connecting a single pendant edge to each path vertex.
Definition 1.5. Any cycle with a pendant edge attached at each vertex is called a Crown Graphand it is denoted by $C_{n} \odot K_{1}$.

Definition 1.6. The Cartesian product of a path on two vertices and another path on n vertices is called the Ladder Graph L_{n}, which has the form $\mathrm{P}_{2} \times \mathrm{P}_{\mathrm{n}}$.

2. Main Results

Theorem 2.1. $C_{m} \cup L_{n}$ admits a square harmonic mean graph for $m \geq 3$ and $n \geq 2$.
Proof. Let C_{m} be the cycle $u_{1}, u_{2}, \ldots, u_{m}, u_{1}$ and L_{n} be a ladder connecting two paths $v_{1}, v_{2}, \ldots, v_{n}$ and $w_{1}, w_{2}, \ldots, w_{n}$ respectively. Let $G=C_{m} \cup L_{n}$ be the union of cycle $C_{m} \quad$ and ladder L_{n}. Let $V(G)=\left\{u_{\alpha}, v_{\beta}, w_{\beta}: 1 \leq \alpha \leq m, 1 \leq \beta \leq n\right\}$ and $E(G)=$ $\left\{u_{\alpha} u_{\alpha+1}, v_{\beta} v_{\beta+1}, w_{\beta} w_{\beta+1}, v_{\beta} w_{\beta}, v_{n} w_{n}: 1 \leq \alpha \leq m, 1 \leq \beta \leq n-1\right\}$. Then $|V(G)|=m+2 n$ and $|E(G)|=m+3 n-2$.A function $h: V(G) \rightarrow\{1,2, \ldots, q+1\}$ is defined by $h\left(u_{\alpha}\right)=\alpha, 1 \leq \alpha \leq m$, $h\left(v_{\beta}\right)=m+3 \beta-2,1 \leq \beta \leq n, \quad h\left(w_{\beta}\right)=m+3 \beta-1,1 \leq \beta \leq n$. The corresponding induced edge labels are $h^{*}\left(u_{\alpha} u_{\alpha+1}\right)=\alpha+1,1 \leq \alpha \leq m-1, h^{*}\left(u_{m} u_{1}\right)=1, h^{*}\left(v_{\beta} v_{\beta+1}\right)=m+3 \beta-$ $1,1 \leq \beta \leq n-1, \quad h^{*}\left(w_{\beta} w_{\beta+1}\right)=m+3 \beta, 1 \leq \beta \leq n-1, h^{*}\left(v_{\beta} w_{\beta}\right)=m+3 \beta-2,1 \leq \beta \leq n$. Thus h^{*} is bijective. Therefore, $C_{m} \cup L_{n}$ admits a square harmonic mean graph if $m \geq 3$ and $n \geq 2$.
Illustration 2.2. The image below displays asquare harmonic mean labeling of $\mathrm{C}_{4} \cup \mathrm{~L}_{5}$.

Figure $\mathrm{I} \mathrm{C}_{4} \cup \mathrm{~L}_{5}$
Theorem 2.3. $\left(\mathrm{C}_{\mathrm{m}} \odot \mathrm{K}_{1}\right) \cup \mathrm{P}_{\mathrm{n}}$ admits a square harmonic mean graph for $\mathrm{m} \geq 3$ and $\mathrm{n} \geq 2$.
Proof. Let $C_{m} \odot K_{1}$ be a graph obtained from a cycle $u_{1}, u_{2}, \ldots, u_{m}, u_{1}$ by joining the vertex u_{α} to pendant vertices v_{α} and let P_{n} be a path $w_{1}, w_{2}, \ldots, w_{n}$. Let $G=\left(C_{m} \odot K_{1}\right) \cup P_{n}$ with $V(G)=$ $\left\{u_{\alpha}, v_{\alpha}, w_{\beta}: 1 \leq \alpha \leq m, 1 \leq \beta \leq n\right\}$ and $E(G)=\left\{u_{\alpha} u_{\alpha+1}, u_{\alpha} v_{\alpha}, w_{\beta} w_{\beta+1}: 1 \leq \alpha \leq m, 1 \leq \beta \leq\right.$ $n-1\}$. Then $|V(G)|=2 m+n$ and $|E(G)|=2 m+n-1$.A function $h: V(G) \rightarrow\{1,2, \ldots, q+1\}$ is defined by $h\left(u_{\alpha}\right)=2 \alpha, 1 \leq \alpha \leq m, \quad h\left(v_{\alpha}\right)=2 \alpha-1,1 \leq \alpha \leq m, \quad h\left(w_{\beta}\right)=2 m+\beta, 1 \leq \beta \leq$ n. The corresponding induced edge labels are $h^{*}\left(u_{\alpha} u_{\alpha+1}\right)=2 \alpha+2,1 \leq \alpha \leq m-1, h^{*}\left(u_{m} u_{1}\right)=2$, $h^{*}\left(u_{\alpha} v_{\alpha}\right)=2 \alpha-1,1 \leq \alpha \leq m, \quad h^{*}\left(w_{\beta} w_{\beta+1}\right)=2 m+\beta, 1 \leq \beta \leq n-1$.Thus h^{*} is bijective. Therefore, $\left(C_{m} \odot K_{1}\right) \cup P_{n}$ admits a square harmonic mean graph if $m \geq 3$ and $n \geq 2$.
Illustration 2.4. The image below displays a square harmonic mean labeling of $\left.K_{1}\right) \cup P_{5}$.

Figure II. $\left(\mathbf{C}_{\mathbf{4}} \odot \mathbf{K}_{\mathbf{1}}\right) \cup \mathbf{P}_{\mathbf{5}}$
Theorem 2.5. $\left(\mathrm{C}_{\mathrm{m}} \odot \mathrm{K}_{1}\right) \cup \mathrm{C}_{\mathrm{n}}$ admits a square harmonic mean graph for $\mathrm{m} \geq 3$ and $\mathrm{n} \geq 2$.
Proof. Let $C_{m} \odot K_{1}$ be a graph obtained from a cycle $u_{1}, u_{2}, \ldots, u_{m}, u_{1}$ by joining the vertex u_{α} to pendant vertices v_{α} and let C_{n} be a cycle $w_{1}, w_{2}, \ldots, w_{n}$. Let $G=\left(C_{m} \odot K_{1}\right) \cup C_{n}$ with $V(G)=$ $\left\{u_{\alpha}, v_{\alpha}, w_{\beta}: 1 \leq \alpha \leq m, 1 \leq \beta \leq n\right\}$ and $E(G)=\left\{u_{\alpha} u_{\alpha+1}, u_{\alpha} v_{\alpha}, w_{\beta} w_{\beta+1}: 1 \leq \alpha \leq m, 1 \leq \beta \leq\right.$ $n\}$. Then $|V(G)|=2 m+n$ and $|E(G)|=2 m+n$.A function $h: V(G) \rightarrow\{1,2, \ldots, q+1\}$ is defined by $h\left(u_{\alpha}\right)=2 \alpha, 1 \leq \alpha \leq m, h\left(v_{\alpha}\right)=2 \alpha-1,1 \leq \alpha \leq m, h\left(w_{\beta}\right)=2 m+\beta+1,1 \leq \beta \leq n$. The corresponding induced edge labels $\operatorname{are}^{*}\left(u_{\alpha} u_{\alpha+1}\right)=2 \alpha+2,1 \leq \alpha \leq m-1, \quad h^{*}\left(u_{m} u_{1}\right)=2$, $h^{*}\left(u_{\alpha} v_{\alpha}\right)=2 \alpha-1,1 \leq \alpha \leq m, \quad h^{*}\left(w_{\beta} w_{\beta+1}\right)=2 m+\beta+1,1 \leq \beta \leq n-1, h^{*}\left(w_{n} w_{1}\right)=2 m+$ 1.Thus h^{*} is bijective. Therefore, $\left(C_{m} \odot K_{1}\right) \cup C_{n}$ admits a square harmonic mean graph if $m \geq 3$ and $n \geq 2$.
Illustration 2.6. The image below displays a square harmonic mean labeling of $\left.\mathrm{K}_{1}\right) \cup \mathrm{C}_{5}$.

Figure III. $\left(\mathbf{C}_{\mathbf{6}} \odot \mathbf{K}_{\mathbf{1}}\right) \cup \mathbf{C}_{\mathbf{5}}$
Theorem 2.7. $\left(\mathrm{C}_{\mathrm{m}} \odot \mathrm{K}_{1}\right) \cup\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right)$ admits a square harmonic mean graph for $\mathrm{m} \geq 3$ and $\mathrm{n} \geq 2$. Proof. Let $u_{1}, u_{2}, \ldots, u_{m}, u_{1}$ be the cycle C_{m} and let v_{α} be the pendant vertex joined to the vertex u_{α} of C_{m}. The resultant graph is $C_{m} \odot K_{1}$. Let $w_{1}, w_{2}, \ldots, w_{n}$ be a path P_{n} and t_{β} be the vertex joined to the vertex w_{j} of path P_{n}. The resultant graph is $P_{n} \odot K_{1}$. Let

$$
G=\left(C_{m} \odot\right.
$$

$\left.K_{1}\right) \cup\left(P_{n} \odot K_{1}\right)$ with $V(G)=\left\{u_{\alpha}, v_{\alpha}, w_{\beta}, t_{\beta}: 1 \leq \alpha \leq m, 1 \leq \beta \leq n\right\}$ and $\quad E(G)=$ $\left\{u_{\alpha} u_{\alpha+1}, u_{\alpha} v_{\alpha}, w_{\beta} w_{\beta+1}, w_{\beta} t_{\beta}, w_{n} t_{n}: 1 \leq \alpha \leq m, 1 \leq \beta \leq n-1\right\}$.Then $\quad|V(G)|=2 m+2 n$ and $|E(G)|=2 m+2 n-1$. A functionh $: V(G) \rightarrow\{1,2, \ldots, q+1\}$ is defined by $h\left(u_{\alpha}\right)=2 \alpha, 1 \leq \alpha \leq$ $m, h\left(v_{\alpha}\right)=2 \alpha-1,1 \leq \alpha \leq m, h\left(w_{\beta}\right)=2 m+2 \beta-1,1 \leq \beta \leq n, h\left(t_{\beta}\right)=2 m+2 \beta, 1 \leq \beta \leq n$. The corresponding induced edge labels are $h^{*}\left(u_{\alpha} u_{\alpha+1}\right)=2 \alpha+2,1 \leq \alpha \leq m-1, h^{*}\left(u_{m} u_{1}\right)=2$, $h^{*}\left(u_{\alpha} v_{\alpha}\right)=2 \alpha-1,1 \leq \alpha \leq m, \quad h^{*}\left(w_{\beta} w_{\beta+1}\right)=2 m+2 \beta, 1 \leq \beta \leq n-1, \quad h^{*}\left(w_{\beta} t_{\beta}\right)=2 m+$ $2 \beta-1,1 \leq \beta \leq n$. Thus h^{*} is bijective.Therefore, $\left(C_{m} \odot K_{1}\right) \cup\left(P_{n} \odot K_{1}\right)$ admits a square harmonic mean graph if $m \geq 3$ and $n \geq 2$.
Illustration 2.8. The image below displays a square harmonic mean labeling of ($\mathrm{C}_{6} \odot \mathrm{~K}_{1}$) U ($\mathrm{P}_{5} \odot$ K_{1}).

Figure IV. $\left(\mathbf{C}_{\mathbf{6}} \odot \mathbf{K}_{\mathbf{1}}\right) \cup\left(\mathbf{P}_{\mathbf{5}} \odot \mathbf{K}_{\mathbf{1}}\right)$
Theorem 2.9. $\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{3}\right) \cup P_{n}$ admits a square harmonic mean graph for $\mathrm{m} \geq 3$ and $\mathrm{n}>1$.
Proof. Let $P_{m} \odot K_{3}$ be a graph obtained from a path $u_{1}, u_{2}, \ldots, u_{m}$ by joining the vertices v_{α}, w_{α} of K_{3} respectively and P_{n} be the path $r_{1}, r_{2}, \ldots, r_{n}$. Let $G=\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{3}\right) \cup P_{n}$ with $V(G)=$ $\left\{u_{\alpha}, v_{\alpha}, w_{\alpha}, r_{\beta}: 1 \leq \alpha \leq m, 1 \leq \beta \leq n\right\} \quad$ and $\quad E(G)=\left\{u_{\alpha} v_{\alpha}, u_{\alpha} w_{\alpha}, v_{\alpha} w_{\alpha}: 1 \leq \alpha \leq m\right\} \cup$ $\left\{u_{\alpha} u_{\alpha+1}, r_{\beta} r_{\beta+1}: 1 \leq \alpha \leq m-1,1 \leq \beta \leq n-1\right\}$ Then $|V(G)|=3 m+n$ and $|E(G)|=4 m+n-$ 2.A function $h: V(G) \rightarrow\{1,2, \ldots, q+1\}$ is defined by $h\left(u_{\alpha}\right)=4 \alpha-3,1 \leq \alpha \leq m, h\left(v_{\alpha}\right)=4 \alpha-2$, $1 \leq \alpha \leq m, h\left(w_{\alpha}\right)=4 \alpha-1,1 \leq \alpha \leq m, \quad h\left(r_{\beta}\right)=4 m+\beta-1,1 \leq \beta \leq n$. The corresponding induced edge labels are $h^{*}\left(u_{\alpha} u_{\alpha+1}\right)=4 \alpha, 1 \leq \alpha \leq m-1, \quad h^{*}\left(u_{\alpha} v_{\alpha}\right)=4 \alpha-3,1 \leq \alpha \leq m$, $h^{*}\left(u_{\alpha} w_{\alpha}\right)=4 \alpha-2,1 \leq \alpha \leq m, h^{*}\left(v_{\alpha} w_{\alpha}\right)=4 \alpha-1,1 \leq \alpha \leq m, h^{*}\left(r_{\beta} r_{\beta+1}\right)=4 m+\beta-1,1 \leq$ $\beta \leq n$. Thus h^{*} is bijective. Therefore, $\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{3}\right) \cup P_{n}$ admits a square harmonic mean graph if $m \geq$ 3 and $n>1$.
Illustration 2.10. The image below displays a square harmonic mean labeling of $\left(\mathrm{P}_{4} \odot \mathrm{~K}_{3}\right) \cup P_{5}$.

Figure V. $\left(\mathbf{P}_{\mathbf{4}} \odot \mathbf{K}_{\mathbf{3}}\right) \cup \boldsymbol{P}_{\mathbf{5}}$
Theorem 2.11. ($\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1,2}$) $\cup C_{n}$ admits a square harmonic mean graph for $\mathrm{m} \geq 2$ and $\mathrm{n} \geq 3$.
Proof. Let $P_{m} \odot K_{1,2}$ be a graph obtained from a path $u_{1}, u_{2}, \ldots, u_{m}$ and let v_{α}, w_{α} be the vertices of $K_{1,2}$ which are joined the vertices u_{α}. Let C_{n} be the cycle $r_{1}, r_{2}, \ldots, r_{n}$ respectively. Let $G=$ $\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1,2}\right) \cup C_{n} \quad$ with $V(G)=\left\{u_{\alpha}, v_{\alpha}, w_{\alpha}, r_{\beta}: 1 \leq \alpha \leq m, 1 \leq \beta \leq n\right\} \quad$ and $\quad E(G)=$ $\left\{u_{\alpha} u_{\alpha+1}, u_{\alpha} v_{\alpha}, u_{m} v_{m}, u_{\alpha} w_{\alpha}, u_{m} w_{m}, r_{\beta} r_{\beta+1}: 1 \leq \alpha \leq m-1,1 \leq \beta \leq n\right\}$. Then $|V(G)|=3 m+n$ and $|E(G)|=3 m+n-1$.A function $h: V(G) \rightarrow\{1,2, \ldots, q+1\}$ is defined by $h\left(u_{\alpha}\right)=3 \alpha-2,1 \leq$ $\alpha \leq m, h\left(v_{\alpha}\right)=3 \alpha-1,1 \leq \alpha \leq m, h\left(w_{\alpha}\right)=3 \alpha, 1 \leq \alpha \leq m, \quad h\left(r_{\beta}\right)=3 m+\beta, 1 \leq \beta \leq n$. The corresponding induced edge labels are $h^{*}\left(u_{\alpha} u_{\alpha+1}\right)=3 \alpha, 1 \leq \alpha \leq m-1, h^{*}\left(u_{\alpha} v_{\alpha}\right)=3 \alpha-2,1 \leq$ $\alpha \leq m, \quad h^{*}\left(u_{\alpha} w_{\alpha}\right)=3 \alpha-1,1 \leq \alpha \leq m, \quad h^{*}\left(r_{\beta} r_{\beta+1}\right)=3 m+\beta, 1 \leq \beta \leq n-1, h^{*}\left(r_{n} r_{1}\right)=$ $3 m$.Thus h^{*} is bijective. Therefore, $\left(\mathrm{P}_{\mathrm{m}} \odot \mathrm{K}_{1,2}\right) \cup C_{n}$ admits a square harmonic mean graph if $m \geq$ 2 and $n \geq 3$.
Illustration 2.12. The image below displays a square harmonic mean labeling of ($\mathrm{P}_{4} \odot \mathrm{~K}_{1,2}$) $\cup C_{5}$.

Figure VI. $\left(\mathbf{P}_{\mathbf{4}} \odot \mathbf{K}_{\mathbf{1}, \mathbf{2}}\right) \cup \boldsymbol{C}_{\mathbf{5}}$

Conclusion:

In this paper, we investigated the behavior of disconnected graphs are square harmonic mean labeling. The derived results are demonstrated by means of sufficient illustrations which provide better understanding.

References.

[1] J.A. Gallian, "A Dynamic Survey of Graph Labeling", The Electronic Journal of Combinatorics,17\# DS6, 2014.
[2] F. Harary, Graph Theory, Narosa Publishing House, New Delhi, 1988.
[3] S. Somasundaram, R. Ponraj, "Mean Labeling of Graphs", National Academy of Science Letter, Volume 26, (2003), 210-213.
[4] S. S. Sandhya, S. Somasundaram and
R. Ponraj, "Some Results on Harmonic Mean Graphs", International Journal of Contemporary Mathematical Sciences, Volume 7 (4), (2012), 197-208.
[5] S.S. Sandhya, Ebin Raja Merly. E \& Deepa S.D., 'Heronian Mean Labeling of Disconnected Graphs', International Journal of Contemporary Mathematical Sciences, vol.12, no. 5, (2017), 201208.

