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Abstract –  
Malware is a threat to information security and poses a security threat to harm networks or computers. Not only 
the effects of malware can generate damage to systems, they can also destroy a country when for example, its 
defense system is affected by malware. This paper takes a look at different machine learning techniques that can be 
used to predict a system’s probability of getting hit by various families of malware, based on different properties of 
that system. Given a dataset of these properties and the machine infections, the proposed solution is to use a 
fusion framework, namely LightGBM +MSVM, to build a model that predicts whether a system will soon be hit with 
malware.The evaluation is carried out through classification evaluation indexes such as accuracy, precision, recall, 
F1-score. 
Index Terms:  LightGBM; feature selection, LightGBM; feature selection 
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1. INTRODUCTION 
With the widespread use of automatic generation tools, 
a large number of new variants of malicious code has 
been generated rapidly. According to the reports 
published by software security groups in 2019, there is 
25% increment in the usage of destructive malware 
compared to last year, enterprise infections were up by 
12%, and financial Trojans were up by 4 percent in 
comparison with the previous year [1]. Malware causes 
a lot of harm to users, such as stealing personal 
information and using too much battery or CPU. The 
majority of adversaries can be involved in targeted 

attacks: corporations, cybercriminals, hacktivists, online 
social hackers, nation states, cyber terrorists, cyber 
fighters, employees and script kiddies  [2, 3].There are 
many types of malwares that are currently available on 
the Internet but worm, Trojan, backdoor, virus and 
botnet are the most common types of malwares to be 
considered as the many dangerous threats for Internet 
users. Therefore, the most malware studies were aimed 
to predict these types of malwares due to causing more 
harms and defects to the network and operating 
systems in comparison to other Malwares. Security 
researchers combat vulnerabilities in operating systems 
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and computer applications by designingantivirus 
applications and anti-malware which are used to detect 
malware [4, 5].The prediction of malware attacks 
remains one of the most challenging problems for 
industry and academia. Traditional security solutions 
cannot keep pace with the ever-evolving threats that 
cause damage to critical systems, leading to loss of 
money, sensitive information, and reputation. The 
malware threat continues to grow along with the 
drastic rise in the number of victims due to the growing 
number of users in cyberspace, financial gains, seeking 
increased computational power for further attacks 
(botnets), availability of malware scripts, etc. Different 
machine learning methods have been proposed to 
address the problem of predicting malware attacks. 
Light Gradient Boosted Machine (LGBM) is the most 
popular classification technique currently used in 
detecting malware. Some of the benefits of LGBM are 
that it is easy to create, easy to understand, and 
reduces complexity [6]. In addition, with the increase of 
malware threats, a lot of big companies use AutoAI to 
help protect their systems. Automated Artificial 
Intelligence (AutoAI) is a variant of automated machine 
learning technology that automates the entire life cycle 
of machine learning [7]. Automation evaluates a 
number of tuning choices to obtain the best possible 
outcome then ranks model-candidates. 
      However, the high dimensionality and complex data 
types of malware attacks data make industry and 
academia a challenging task. Many machine learning 
algorithms, such as SVM [8], logistic regression [9], and 
XGBoost [10], have been used to develop intrusion 
detection models and have achieved good results. In 
recent years, deep learning has received extensive 
attention due to its ability to mine high-dimensional 
and large-scale data.In this paper, we propose a new 
method by giving a dataset consisting of machine 
properties and whether the machine was hit by 
malware, a model to predict whether a new machine 
given its properties will be hit by malware soon, can be 
built. There are various machine learning techniques 
that can be used to model the patterns associated with 
malware attacks in computer systems. The ones 
explored in this paper are: LightGBM, SVM and LSTM. 

Taking into consideration the given dataset, 
LGBM+MSVM is settled on as the best approach to the 
proposed problem statement. 
The rest of the paper is organized as follows. We first 
briefly review the related literature in Section 2. Section 
3 presents our method to improve malware prediction 
analysis framework. Section 4 presents experimental 
results which show that our method stands out as a 
state-of-the-art technique. Finally, we present a 
discussion and conclude the paper in Section 5. 
2. RELATED WORK 
In this section, we discuss previous state-of-art works 
which uses machine learning for malware analysis. 
In [11], the authors aimed for classification of malware 
using a deep learning model to obtain an accurate and 
efficient performance. The system proposed in this 
study extracts a number of features and trains the long 
short-term memory (LSTM) model. The study utilizes 
hyper-parameter tuning to improve the accuracy and 
efficiency of the LSTM model. The findings revealed 
99.65% accuracy using sigmoid function that 
outperforms other activation function. This work can be 
helpful in malware detection to improve security 
posture. 
In [12], the authors have explored different algorithms 
to obtain the best algorithm for malware prediction 
and to obtain the best set of features that will help us 
in predicting malware efficiently. From our analysis, 
they have seen that ensemble methods are better than 
traditional machine leaning algorithms for predicting 
malware. They have reduced the number of features 
from 215 to 100 achieving an accuracy of 99.5% using 
Light GBM. In addition, they have obtained an accuracy 
of 99.1% using Random Forest having only 55 features. 
In [13], the authors applied machine learning 
algorithms to predict the malware infection rates of 
computers based on its features. They used supervised 
machine learning algorithms and gradient boosting 
algorithms. They have collected a publicly available 
dataset, which was divided into two parts, one being 
the training set, and the other will be the testing set. 
After conducting four different experiments using the 
aforementioned algorithms, it has been discovered that 
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LightGBM is the best model with an AUC Score of 
0.73926. 
In [14], the authors proposed an integrative feature 
extraction algorithm based on simhash, which 
combines the static information e.g., API (Application 
Programming Interface) calls and dynamic information 
(such as file, registry and network behaviors) of 
malicious samples to form integrative features. The 
experiment extracts the integrative features of some 
static information and dynamic information, and then 
compares the classification, time and obfuscated-
detection performance of the static, dynamic and 
integrated features, respectively, by using several 
common machine learning algorithms. The results show 
that the integrative features have better time 
performance than the static features, and better 
classification performance than the dynamic features, 
and almost the same obfuscated-detection 
performance as the dynamic features. This algorithm 
can provide some support for feature extraction of 
malware detection. 
In [15], the authors proposed a control flow-based 
feature extraction dynamic programming algorithm for 
fast extraction of control flow-based features with 
polynomial time. From the experimental results, it is 
demonstrated that the proposed algorithm is more 
efficient and effective in detecting malware than the 
existing ones. Applying the proposed algorithm to an 
Internet of Things dataset gives better results on three 
measures: Accuracy = 99.05%, False Positive Rate = 
1.31% and False Negative Rate = 0.66%. 
In [16], the authors represented malware as opcode 
sequences and detect it using a deep belief network 
(DBN). Compared with traditional shallow neural 
networks, DBNs can use unlabeled data to pretrain a 
multi-layer generative model, which can better 
represent the characteristics of data samples. They 
compared the performance of DBNs with that of three 
baseline malware detection models, which use support 
vector machines, decision trees, and the k-nearest 
neighbor algorithm as classifiers. The experiments 
demonstrate that the DBN model provides more 
accurate detection than the baseline models. When 
additional unlabeled data are used for DBN pretraining, 

the DBNs perform better than the other detection 
models. They also used the DBNs as an autoencoder to 
extract the feature vectors of executables. The 
experiments indicate that the autoencoder can 
effectively model the underlying structure of input data 
and significantly reduce the dimensions of feature 
vectors. 
3. METHODOLOGY  
For classification task, LightGBM is fast, efficient and 
difficult to over fit, especially for high-dimensional data, 
but it can only give label classification. SVM algorithm 
with linear kernel function can give hyperplane 
representing malware detection, but its effect depends 
on the quality of feature selection. Taking the 
advantages of the two algorithms, this paper proposes 
a malware detection algorithm based on LightGBM + 
SVM fusion model, shown in Figure 1.Firstly, the 
training set is sent to LightGBM for training. In the 
training process, features importance used for feature 
selection are determined by two parts, i.e., times being 
used and their gain to final classification results. Finally, 
selected features are sent to SVM for training to solve 
the malware detection boundary. 
Dataset: 
The dataset for the proposed work chosen was the 
Microsoft Malware Prediction dataset from Kaggle 
which consists of system properties and machine 
infections of systems running on Windows [17]. The 
problem which we tried to solve was to predict if a 
machine will soon be hit with malware. There are 
totally around 9 million rows and 84 columns in the 
training dataset and there are another 9 million rows 
and columns 83 in the test dataset. Each row in the test 
and train dataset corresponds to a system, uniquely 
identified by a ’MachineIdentifier’. ’HasDetections’ is 
the target and indicates whether Malware was 
detected on the system. ’HasDetections’ is missing in 
the test dataset and must be predicted using the train 
dataset.The goal of this competition is to predict a 
Windows machine’s probability of getting infected by 
various families of malware, based on different 
properties of that machine. The telemetry data 
containing these properties and the machine infections 
was generated by combining heartbeat and threat 
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reports collected by Microsoft's endpoint protection 
solution, Windows Defender. Each row in this dataset 
corresponds to a machine, uniquely identified by a 
MachineIdentifier. HasDetections is the ground truth 
and indicates that Malware was detected on the 
machine. Using the information and labels in train.csv, 
you must predict the value for HasDetections for each 
machine in test.csv.  

 
Figure 1: Scheme of malware prediction algorithm with 

LightGBM + MSVM fusion 
Data Preprocessing 

Data preprocessing is a necessary step before training 
the model. It includes three parts: data Cleaning, data 
normalization and one-hot-encoding. 
Data Cleaning: Before the model was trained, some 
data cleaning had to be done. There were 5 columns in 
the dataset which had above 70% empty values. They 
were dropped. The columns were  PuaMode, 
CensusProcessorClass,  DefaultBrowsersIdentifier,  
CensusIsFlightingInternal, and 
CensusInternalBatteryType.A column named 
SmartScreen had some inconsistent values. There were 
values like ’promt’, ’promprt’, etc for the value 
’prompt’,’of’ in place of ’off’, ’enabled’ for ’on’,’00000’ 
for ’0’ and so on. Those inconsistent values too had to 
be replaced by the proper values. We also encountered 
many NaN values for many rows. So, we replaced the 
NaN values with the median of the column to which it 
belonged to. 
Data Normalization: The min-max normalization 
method is adopted to scale the value xi,jinto the 
numeric range [0,1], according to: 

𝑥𝑓𝑗 =
𝑥𝑓𝑖 −𝑚𝑖𝑛⁡(𝑥𝑓)

(𝑥𝑓) − 𝑚𝑖𝑛⁡(𝑥𝑓)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 

Among them, max(xf) and min(xf) represent the 
maximum and minimum value of the fth (numerical) 
feature xf ; whereas xfj is the normalized feature value 
ranged between [0,1]. 
One-Hot-Encoding: Also looking at the test dataset, 
many category values for certain categorical attributes 
that were present in the training data were missing in 
test data. Hence, they will not be of much use in 
predicting for test data. Such category values were 
replaced with a uniform dummy value prior to 
encoding. For all categorical variables sorted frequency 
encoding was done. 
Feature selection with LightGBM: 
Feature selection, the process of finding and selecting 
the most useful features in a dataset, is a crucial step of 
the machine learning pipeline. Unnecessary features 
decrease training speed, decrease model 
interpretability, and, most importantly, decrease 
generalization performance on the test set. The goal is 
to limit the number of features used in the final model 

Dataset 
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based on features’ importance and correlation with 
others. The averaged importance score for each feature 
was calculated by using lightGBM. Next, we calculate 
the correlation within those features. Then, we select 
features which have high importance scores (higher 
than an importance score threshold) and low 
correlation (lower than a correlation threshold). For the 
features which are highly correlated, the one with 
highest importance score will be chosen from 
correlated features sets. The feature selection is done 
in the training set. 
The training instances are arranged in descending order 
according to the absolute value of their gradients, and 
the first a% of the instances with larger gradients are 
retained to form the instance subset A. For the residual 
set Ac formed by the         (1 − a)% of instances with 
smaller gradients, a subset B of size b*| Ac | is 
randomly formed. Finally, the instance is split according 
to the estimated variance gain 𝑉𝑗

∗(𝑑) on the subset  

𝐴 ∪ 𝐵. 
𝑉𝑗
∗(𝑑)

=
1

𝑛
(
(∑𝑥𝑖𝜖𝐴𝑙

𝑔𝑖 +
1−𝑎

𝑏
∑𝑥𝑖𝜖𝐵𝑙

𝑔𝑖)
2

𝑛𝑙
𝑗
(𝑑)

+
(∑𝑥𝑖𝜖𝐴𝑟

𝑔𝑖 +
1−𝑎

𝑏
∑𝑥𝑖𝜖𝐵𝑟

𝑔𝑖)
2

𝑛𝑟
𝑗
(𝑑)

) (2) 

where 𝐴𝑙 = {𝑥𝑖𝜖𝐴: 𝑥𝑖𝑗 ≤ 𝑑}, 𝐴𝑟 = {𝑥𝑖𝜖𝐴: 𝑥𝑖𝑗 > 𝑑}, 

𝐵𝑙 = {𝑥𝑖𝜖𝐵: 𝑥𝑖𝑗 ≤ 𝑑}, 𝐵𝑟 = {𝑥𝑖𝜖𝐵: 𝑥𝑖𝑗 > 𝑑} , d is the 

point in the data where the split is calculated to find 

the best gain invariance, and the coefficient
1−𝑎

𝑏
 is used 

to normalize the gradient sum over B back to the size of 
Ac. 
        The trees in the LightGBM model are constructed 
based on the above steps. Let the feature set, xi be x1, 
x2,. . . , xm where i = 1, 2, . . . , m. Then, according to the 
number of times each feature is used to split the 
training data across all trees, the feature importance 
score FISi is calculated. Therefore, the feature 
importance score set is represented as:  
𝐹𝐼𝑆𝑖 = {𝑠|𝑎 = 𝑤𝑖𝑥𝑖}⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 

where wi represents the weight of each feature, and xi 
represents the feature set. 
Feature Engineering 
To capture the sampling rate, we engineer a new 
feature ’WeekNumber’ which is the number of weeks 
that had passed since 1st Jan 2018 when the 
observation was sampled. If an observation was 
sampled before 1st  Jan 2018, this attribute will have a 
negative value. The newly engineered feature is now 
representative the sampling rate at the time at which 
the observation was sampled. This new feature is 
important for predicting whether the observation is of 
a system with a malware detection.  
 An observation with ’WeekNumber’ value equal to the 
most  
frequent value of ’WeekNumber’ will have been 
sampled from the time period when sampling rate was 
very high. When the sampling rate is high detection 
rate is high as seen in Fig. 5. Thus, an observation with 
a common ’WeekNumber’ value is more likely to have 
malware detection. We later apply sorted frequency 
encoding on the attribute as the sorted frequency of 
’WeekNumber’ is essentially sampling rate, and 
sampling rate directly correlates with the target which 
we are trying to predict (Malware detection rate). 
Classification with Multi-Support Vector Machine 
(MSVM): We analyze it with a classification-regression 
machine learning system. Unlike artificial neural 
networks, SVM has many generalizations that prevent 
overfitting. With a suitable kernel, the SVM can handle 
nonlinear data for regression and classification. C and 
γare SVM hyper-parameters. Before model training, we 
should tweak hyper-parameters. We trained the SVM 
with the overall parameters. We checked the validation 
collection model by testing the model using the 
reference dataset. As SVM kernels and decision 
functions, we employed linear, polynomial, and RBF 
(ovo). A comparative examination of C,γ  kernel 
parameters. In training, validation, and testing, 
practically all classifiers are the same. Because SVM was 
created for binary classification, multi-class 
classification is difficult. ovo means binary versus one. 
SVM may not be suitable for this purpose, though. The 
result displays inaccurate data. Through exploration, 
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we uncovered three multi-class problem-solving 
systems. ovr, M (M-1)/2, and SVM formula expansion. 
The adapted classifier has the following form. 

 

  (4) 

where, 𝜏𝑘 ∈ (0,1) is the weight of each base classifier 

𝑓𝑠𝑟𝑐
𝑘 (𝑥), 𝛥𝑓(𝑥) is the perturbation function that is 

learnt from a small set of labelled target-domain data in 

𝐷𝑡𝑎𝑟
𝑙 . As shown in [27] it has the form: 

 

 (5) 

 

 

 

 
 
 
 
 
(6) 

 

(7) 

where 𝜏𝑘 a weighted sum 𝑦𝑖𝑓𝑠𝑟𝑐
𝑘 (𝑥𝑖) and the 

classification performance of the target domain. 
Consequently, if we classify the labelled destination 
domain info well, we have allocated more massive base 
classifiers. With the new decision function provided (4), 
(5) and (7) now: 

 

 

(8) 

Compared with (8) a regular SVM model𝑓(𝑥) =

∑𝑖=1 𝑎𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥), this multi-classification adaptation 
model may be interpreted as applying additional 
features to the projected labels of the basic classifiers 
in the target domain. The scalar B combines the 
influence of the initial characteristics and more features 
according to this interpretation. 
4. RESULTS AND DISCUSSIONS 

In this section, we will present the performance of our 
proposed malware analysis framework with extensive 
experimental results. Scikit-Learn library produced 
results with detailed accuracy of each class and 
confusion matrix for both binary classifier and multi-
class classifier. For malware analysis, we divided them 
into training and testing set. The training set contains 
70% of malware samples, and the testing set contains 
30% of malware samples.We have used five different 
performance metrics, i.e., Accuracy, Precision, Recall, F-
measure and AUC (Area under ROC Curve) to evaluate 
the performance of our proposed malware analysis 
framework. The performance metrics can be expressed 
in terms of TP (True Positive), FP (False Positive), TN 
(True Negative) and FN (False Negative). 
Exploratory Data Analysis: 
Dataset consists of about 8 million rows and 83 
columns describing several attributes of Microsoft 
devices under consideration. An exploration of the time 
series aspect of the problem – As mentioned 
previously, malware detection could be viewed as a 
time series problem. To visualize this, plots sampling 
density over time were drawn for both train and test 
data as seen in Fig 2. and Fig 3. respectively. The green 
line depicts sampling density over time and the black 
line represents the malware detection rate (only for 
training data) over time. The following observations can 
be made: 
• A majority of the train data is from August to October 
2018. 
• A majority of the test data is from October to 
December 2018. 
• It is evident that there exists a relation between 
detection rate and sampling rate as the detection rate 
roughly increases and decreases with sampling rate for 
the training data. 
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Figure 2: Train Data - Sampling density versus Time and 
Detection density versus Time 

 
Figure 3: Test Data - Sampling density versus Time 

The last point indicates that it would be useful to 
engineer a feature that can capture the sampling rate 
at the time the observation was sampled, as a machine 
is more likely to have malware if it is sampled from a 
period with a high sampling rate. 
Target variable is whether the malware is detected or 
not. Figure 4 shows that data is balanced with respect 
to target attribute hence no need of up sampling any 
class. 

 
Figure 4: Distribution of Target attribute across the 

dataset 
Figure 5 shows that Detachable devices usually have 
SSD, desktop PC have HDD and SDD and Notebooks 
usually have HDD. 

 
Figure 5: Correlation between 

CensusPrimaryDiskTypeName and 
CensusMDC2FormFactor 

We can see several interesting things here: 
PuaMode and Census_ProcessorClass have 99%+ 
missing values, which means that these columns are 
useless and should be dropped; In Default Browsers 
Identifier column 95% values belong to one category, 
so we think this column is also useless; There are 26 
columns in total in which one category contains 90% 
values. we think that these imbalanced columns should 
be removed from the dataset. 
Fig 6. depicts the feature importance of 20 of the most 
important features of the train data for the model. 
Note that newly engineered feature ’WeekNo’ is one of 
the most important attributes for predicting malware. 
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Figure 6: Feature importance of the 20 most important 

features- sourced from the trained LGBM model 

 
Figure 7: Comparison of the classification accuracy with 

a RF, LSTM+CNN, SVM and proposed work. 
Table 1: Evaluation results of training data and test data 

with a baseline and proposed method 

 
Evaluatio
n metric 

LSTM+CNN Baseline 
LightGBM+ SVM 
Proposed 

Training 
Data 

Test 
Data 

Training 
Data 

Test 
Data 

ROC AUC 0.8909 0.9175 
0.9211 0.932

2 

Time 
(msec) 

250.109 167.68 
189.21 145.7

1 

 
Based on the Table 1, the proposed model area under 
the curve for the receiver operating characteristic curve 
(ROC) is 93.22% for test data and testing time is 
145msec. The evaluation of the metrics table and ROC 
curve visualization gives a summary of how the model 
performs in general. Figure 8 shows that our method 
produces less training and testing time of 189.21msec 

and 145.71msec as related to baseline model.The 
computational time of our model is around 60 sec for 
training on 300 samples and less than 50 ms for testing 
on one surface. 

 
Figure 8: Comparison of the training and testing time 

using baseline and proposed model 
5. CONCLUSION 
In this paper, we present a novel malware analysis 
framework which can detect and classify malware 
efficiently. Our proposed approach uses two different 
feature selection algorithms in order to extract most 
relevant features which reduces training time and 
increases detection and classification accuracy. Given 
the relatively good performance of our model we can 
conclude that using machine learning techniques to 
predict whether a system will soon be hit with malware 
could potentially be an excellent preventative measure 
in addition to existing security tools. In our proposed 
model, we select features based on the feature 
importance score generated by the LightBGM model. 
From the comparison results, the classification accuracy 
of the model proposed (LightGBM+MSVM) in this paper 
is higher, reaching 99.12%, which is more advantageous 
than other models. The experimental results show that 
the method has a good detection effect on network 
intrusion detection. 
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