
NeuroQuantology| November 2022 | Volume 20 | Issue 19 | Page 3350-3358| doi: 10.48047/nq.2022.20.19.NQ99297
B.Swathi et al/ An Efficient Machine Learning-Based Malware Prediction and Classification Architecture: A Cybersecurity Case Study

eISSN1303-5150 www.neuroquantology.com

An Efficient Machine Learning-Based Malware
Prediction and Classification Architecture: A

Cybersecurity Case Study

1B.Swathi,
1Assistant Professor, Vignan Institute of Technology and Sciences, Hyderabad

2G.Anitha
2Assistant Professor, CMR Institute of Technology, Hyderabad

3G.Himabindu
3AssistantProfessor, Geethanjali College of Engineering and Technology, Hyderabad

Abstract –
Malware is a threat to information security and poses a security threat to harm networks or computers. Not only
the effects of malware can generate damage to systems, they can also destroy a country when for example, its
defense system is affected by malware. This paper takes a look at different machine learning techniques that can be
used to predict a system’s probability of getting hit by various families of malware, based on different properties of
that system. Given a dataset of these properties and the machine infections, the proposed solution is to use a
fusion framework, namely LightGBM +MSVM, to build a model that predicts whether a system will soon be hit with
malware.The evaluation is carried out through classification evaluation indexes such as accuracy, precision, recall,
F1-score.
Index Terms: LightGBM; feature selection, LightGBM; feature selection
DOI Number: 10.48047/nq.2022.20.19.NQ99297 NeuroQuantology2022;20(19): 3350-3358

1. INTRODUCTION
With the widespread use of automatic generation tools,
a large number of new variants of malicious code has
been generated rapidly. According to the reports
published by software security groups in 2019, there is
25% increment in the usage of destructive malware
compared to last year, enterprise infections were up by
12%, and financial Trojans were up by 4 percent in
comparison with the previous year [1]. Malware causes
a lot of harm to users, such as stealing personal
information and using too much battery or CPU. The
majority of adversaries can be involved in targeted

attacks: corporations, cybercriminals, hacktivists, online
social hackers, nation states, cyber terrorists, cyber
fighters, employees and script kiddies [2, 3].There are
many types of malwares that are currently available on
the Internet but worm, Trojan, backdoor, virus and
botnet are the most common types of malwares to be
considered as the many dangerous threats for Internet
users. Therefore, the most malware studies were aimed
to predict these types of malwares due to causing more
harms and defects to the network and operating
systems in comparison to other Malwares. Security
researchers combat vulnerabilities in operating systems

3350

NeuroQuantology| November 2022 | Volume 20 | Issue 19 | Page 3350-3358| doi: 10.48047/nq.2022.20.19.NQ99297
B.Swathi et al/ An Efficient Machine Learning-Based Malware Prediction and Classification Architecture: A Cybersecurity Case Study

eISSN1303-5150 www.neuroquantology.com

and computer applications by designingantivirus
applications and anti-malware which are used to detect
malware [4, 5].The prediction of malware attacks
remains one of the most challenging problems for
industry and academia. Traditional security solutions
cannot keep pace with the ever-evolving threats that
cause damage to critical systems, leading to loss of
money, sensitive information, and reputation. The
malware threat continues to grow along with the
drastic rise in the number of victims due to the growing
number of users in cyberspace, financial gains, seeking
increased computational power for further attacks
(botnets), availability of malware scripts, etc. Different
machine learning methods have been proposed to
address the problem of predicting malware attacks.
Light Gradient Boosted Machine (LGBM) is the most
popular classification technique currently used in
detecting malware. Some of the benefits of LGBM are
that it is easy to create, easy to understand, and
reduces complexity [6]. In addition, with the increase of
malware threats, a lot of big companies use AutoAI to
help protect their systems. Automated Artificial
Intelligence (AutoAI) is a variant of automated machine
learning technology that automates the entire life cycle
of machine learning [7]. Automation evaluates a
number of tuning choices to obtain the best possible
outcome then ranks model-candidates.
 However, the high dimensionality and complex data
types of malware attacks data make industry and
academia a challenging task. Many machine learning
algorithms, such as SVM [8], logistic regression [9], and
XGBoost [10], have been used to develop intrusion
detection models and have achieved good results. In
recent years, deep learning has received extensive
attention due to its ability to mine high-dimensional
and large-scale data.In this paper, we propose a new
method by giving a dataset consisting of machine
properties and whether the machine was hit by
malware, a model to predict whether a new machine
given its properties will be hit by malware soon, can be
built. There are various machine learning techniques
that can be used to model the patterns associated with
malware attacks in computer systems. The ones
explored in this paper are: LightGBM, SVM and LSTM.

Taking into consideration the given dataset,
LGBM+MSVM is settled on as the best approach to the
proposed problem statement.
The rest of the paper is organized as follows. We first
briefly review the related literature in Section 2. Section
3 presents our method to improve malware prediction
analysis framework. Section 4 presents experimental
results which show that our method stands out as a
state-of-the-art technique. Finally, we present a
discussion and conclude the paper in Section 5.
2. RELATED WORK
In this section, we discuss previous state-of-art works
which uses machine learning for malware analysis.
In [11], the authors aimed for classification of malware
using a deep learning model to obtain an accurate and
efficient performance. The system proposed in this
study extracts a number of features and trains the long
short-term memory (LSTM) model. The study utilizes
hyper-parameter tuning to improve the accuracy and
efficiency of the LSTM model. The findings revealed
99.65% accuracy using sigmoid function that
outperforms other activation function. This work can be
helpful in malware detection to improve security
posture.
In [12], the authors have explored different algorithms
to obtain the best algorithm for malware prediction
and to obtain the best set of features that will help us
in predicting malware efficiently. From our analysis,
they have seen that ensemble methods are better than
traditional machine leaning algorithms for predicting
malware. They have reduced the number of features
from 215 to 100 achieving an accuracy of 99.5% using
Light GBM. In addition, they have obtained an accuracy
of 99.1% using Random Forest having only 55 features.
In [13], the authors applied machine learning
algorithms to predict the malware infection rates of
computers based on its features. They used supervised
machine learning algorithms and gradient boosting
algorithms. They have collected a publicly available
dataset, which was divided into two parts, one being
the training set, and the other will be the testing set.
After conducting four different experiments using the
aforementioned algorithms, it has been discovered that

3351

NeuroQuantology| November 2022 | Volume 20 | Issue 19 | Page 3350-3358| doi: 10.48047/nq.2022.20.19.NQ99297
B.Swathi et al/ An Efficient Machine Learning-Based Malware Prediction and Classification Architecture: A Cybersecurity Case Study

eISSN1303-5150 www.neuroquantology.com

LightGBM is the best model with an AUC Score of
0.73926.
In [14], the authors proposed an integrative feature
extraction algorithm based on simhash, which
combines the static information e.g., API (Application
Programming Interface) calls and dynamic information
(such as file, registry and network behaviors) of
malicious samples to form integrative features. The
experiment extracts the integrative features of some
static information and dynamic information, and then
compares the classification, time and obfuscated-
detection performance of the static, dynamic and
integrated features, respectively, by using several
common machine learning algorithms. The results show
that the integrative features have better time
performance than the static features, and better
classification performance than the dynamic features,
and almost the same obfuscated-detection
performance as the dynamic features. This algorithm
can provide some support for feature extraction of
malware detection.
In [15], the authors proposed a control flow-based
feature extraction dynamic programming algorithm for
fast extraction of control flow-based features with
polynomial time. From the experimental results, it is
demonstrated that the proposed algorithm is more
efficient and effective in detecting malware than the
existing ones. Applying the proposed algorithm to an
Internet of Things dataset gives better results on three
measures: Accuracy = 99.05%, False Positive Rate =
1.31% and False Negative Rate = 0.66%.
In [16], the authors represented malware as opcode
sequences and detect it using a deep belief network
(DBN). Compared with traditional shallow neural
networks, DBNs can use unlabeled data to pretrain a
multi-layer generative model, which can better
represent the characteristics of data samples. They
compared the performance of DBNs with that of three
baseline malware detection models, which use support
vector machines, decision trees, and the k-nearest
neighbor algorithm as classifiers. The experiments
demonstrate that the DBN model provides more
accurate detection than the baseline models. When
additional unlabeled data are used for DBN pretraining,

the DBNs perform better than the other detection
models. They also used the DBNs as an autoencoder to
extract the feature vectors of executables. The
experiments indicate that the autoencoder can
effectively model the underlying structure of input data
and significantly reduce the dimensions of feature
vectors.
3. METHODOLOGY
For classification task, LightGBM is fast, efficient and
difficult to over fit, especially for high-dimensional data,
but it can only give label classification. SVM algorithm
with linear kernel function can give hyperplane
representing malware detection, but its effect depends
on the quality of feature selection. Taking the
advantages of the two algorithms, this paper proposes
a malware detection algorithm based on LightGBM +
SVM fusion model, shown in Figure 1.Firstly, the
training set is sent to LightGBM for training. In the
training process, features importance used for feature
selection are determined by two parts, i.e., times being
used and their gain to final classification results. Finally,
selected features are sent to SVM for training to solve
the malware detection boundary.
Dataset:
The dataset for the proposed work chosen was the
Microsoft Malware Prediction dataset from Kaggle
which consists of system properties and machine
infections of systems running on Windows [17]. The
problem which we tried to solve was to predict if a
machine will soon be hit with malware. There are
totally around 9 million rows and 84 columns in the
training dataset and there are another 9 million rows
and columns 83 in the test dataset. Each row in the test
and train dataset corresponds to a system, uniquely
identified by a ’MachineIdentifier’. ’HasDetections’ is
the target and indicates whether Malware was
detected on the system. ’HasDetections’ is missing in
the test dataset and must be predicted using the train
dataset.The goal of this competition is to predict a
Windows machine’s probability of getting infected by
various families of malware, based on different
properties of that machine. The telemetry data
containing these properties and the machine infections
was generated by combining heartbeat and threat

3352

NeuroQuantology| November 2022 | Volume 20 | Issue 19 | Page 3350-3358| doi: 10.48047/nq.2022.20.19.NQ99297
B.Swathi et al/ An Efficient Machine Learning-Based Malware Prediction and Classification Architecture: A Cybersecurity Case Study

eISSN1303-5150 www.neuroquantology.com

reports collected by Microsoft's endpoint protection
solution, Windows Defender. Each row in this dataset
corresponds to a machine, uniquely identified by a
MachineIdentifier. HasDetections is the ground truth
and indicates that Malware was detected on the
machine. Using the information and labels in train.csv,
you must predict the value for HasDetections for each
machine in test.csv.

Figure 1: Scheme of malware prediction algorithm with

LightGBM + MSVM fusion
Data Preprocessing

Data preprocessing is a necessary step before training
the model. It includes three parts: data Cleaning, data
normalization and one-hot-encoding.
Data Cleaning: Before the model was trained, some
data cleaning had to be done. There were 5 columns in
the dataset which had above 70% empty values. They
were dropped. The columns were PuaMode,
CensusProcessorClass, DefaultBrowsersIdentifier,
CensusIsFlightingInternal, and
CensusInternalBatteryType.A column named
SmartScreen had some inconsistent values. There were
values like ’promt’, ’promprt’, etc for the value
’prompt’,’of’ in place of ’off’, ’enabled’ for ’on’,’00000’
for ’0’ and so on. Those inconsistent values too had to
be replaced by the proper values. We also encountered
many NaN values for many rows. So, we replaced the
NaN values with the median of the column to which it
belonged to.
Data Normalization: The min-max normalization
method is adopted to scale the value xi,jinto the
numeric range [0,1], according to:

𝑥𝑓𝑗 =
𝑥𝑓𝑖 −𝑚𝑖𝑛⁡(𝑥𝑓)

(𝑥𝑓) − 𝑚𝑖𝑛⁡(𝑥𝑓)
⁡⁡(1)

Among them, max(xf) and min(xf) represent the
maximum and minimum value of the fth (numerical)
feature xf ; whereas xfj is the normalized feature value
ranged between [0,1].
One-Hot-Encoding: Also looking at the test dataset,
many category values for certain categorical attributes
that were present in the training data were missing in
test data. Hence, they will not be of much use in
predicting for test data. Such category values were
replaced with a uniform dummy value prior to
encoding. For all categorical variables sorted frequency
encoding was done.
Feature selection with LightGBM:
Feature selection, the process of finding and selecting
the most useful features in a dataset, is a crucial step of
the machine learning pipeline. Unnecessary features
decrease training speed, decrease model
interpretability, and, most importantly, decrease
generalization performance on the test set. The goal is
to limit the number of features used in the final model

Dataset

Data preprocessing (Cleaning,

normalization and one-hot-encoding)

Train/Test split

70% training

Feature selection (LightGBM)

MSVM CNN-LSTM

Hyperparameter tuning

(10-fold CV)

30

%

test

Model evaluations

Model

building

3353

NeuroQuantology| November 2022 | Volume 20 | Issue 19 | Page 3350-3358| doi: 10.48047/nq.2022.20.19.NQ99297
B.Swathi et al/ An Efficient Machine Learning-Based Malware Prediction and Classification Architecture: A Cybersecurity Case Study

eISSN1303-5150 www.neuroquantology.com

based on features’ importance and correlation with
others. The averaged importance score for each feature
was calculated by using lightGBM. Next, we calculate
the correlation within those features. Then, we select
features which have high importance scores (higher
than an importance score threshold) and low
correlation (lower than a correlation threshold). For the
features which are highly correlated, the one with
highest importance score will be chosen from
correlated features sets. The feature selection is done
in the training set.
The training instances are arranged in descending order
according to the absolute value of their gradients, and
the first a% of the instances with larger gradients are
retained to form the instance subset A. For the residual
set Ac formed by the (1 − a)% of instances with
smaller gradients, a subset B of size b*| Ac | is
randomly formed. Finally, the instance is split according
to the estimated variance gain 𝑉𝑗

∗(𝑑) on the subset

𝐴 ∪ 𝐵.
𝑉𝑗
∗(𝑑)

=
1

𝑛
(
(∑𝑥𝑖𝜖𝐴𝑙

𝑔𝑖 +
1−𝑎

𝑏
∑𝑥𝑖𝜖𝐵𝑙

𝑔𝑖)
2

𝑛𝑙
𝑗
(𝑑)

+
(∑𝑥𝑖𝜖𝐴𝑟

𝑔𝑖 +
1−𝑎

𝑏
∑𝑥𝑖𝜖𝐵𝑟

𝑔𝑖)
2

𝑛𝑟
𝑗
(𝑑)

) (2)

where 𝐴𝑙 = {𝑥𝑖𝜖𝐴: 𝑥𝑖𝑗 ≤ 𝑑}, 𝐴𝑟 = {𝑥𝑖𝜖𝐴: 𝑥𝑖𝑗 > 𝑑},

𝐵𝑙 = {𝑥𝑖𝜖𝐵: 𝑥𝑖𝑗 ≤ 𝑑}, 𝐵𝑟 = {𝑥𝑖𝜖𝐵: 𝑥𝑖𝑗 > 𝑑} , d is the

point in the data where the split is calculated to find

the best gain invariance, and the coefficient
1−𝑎

𝑏
 is used

to normalize the gradient sum over B back to the size of
Ac.
 The trees in the LightGBM model are constructed
based on the above steps. Let the feature set, xi be x1,
x2,. . . , xm where i = 1, 2, . . . , m. Then, according to the
number of times each feature is used to split the
training data across all trees, the feature importance
score FISi is calculated. Therefore, the feature
importance score set is represented as:
𝐹𝐼𝑆𝑖 = {𝑠|𝑎 = 𝑤𝑖𝑥𝑖}⁡⁡(3)

where wi represents the weight of each feature, and xi
represents the feature set.
Feature Engineering
To capture the sampling rate, we engineer a new
feature ’WeekNumber’ which is the number of weeks
that had passed since 1st Jan 2018 when the
observation was sampled. If an observation was
sampled before 1st Jan 2018, this attribute will have a
negative value. The newly engineered feature is now
representative the sampling rate at the time at which
the observation was sampled. This new feature is
important for predicting whether the observation is of
a system with a malware detection.
 An observation with ’WeekNumber’ value equal to the
most
frequent value of ’WeekNumber’ will have been
sampled from the time period when sampling rate was
very high. When the sampling rate is high detection
rate is high as seen in Fig. 5. Thus, an observation with
a common ’WeekNumber’ value is more likely to have
malware detection. We later apply sorted frequency
encoding on the attribute as the sorted frequency of
’WeekNumber’ is essentially sampling rate, and
sampling rate directly correlates with the target which
we are trying to predict (Malware detection rate).
Classification with Multi-Support Vector Machine
(MSVM): We analyze it with a classification-regression
machine learning system. Unlike artificial neural
networks, SVM has many generalizations that prevent
overfitting. With a suitable kernel, the SVM can handle
nonlinear data for regression and classification. C and
γare SVM hyper-parameters. Before model training, we
should tweak hyper-parameters. We trained the SVM
with the overall parameters. We checked the validation
collection model by testing the model using the
reference dataset. As SVM kernels and decision
functions, we employed linear, polynomial, and RBF
(ovo). A comparative examination of C,γ kernel
parameters. In training, validation, and testing,
practically all classifiers are the same. Because SVM was
created for binary classification, multi-class
classification is difficult. ovo means binary versus one.
SVM may not be suitable for this purpose, though. The
result displays inaccurate data. Through exploration,

3354

NeuroQuantology| November 2022 | Volume 20 | Issue 19 | Page 3350-3358| doi: 10.48047/nq.2022.20.19.NQ99297
B.Swathi et al/ An Efficient Machine Learning-Based Malware Prediction and Classification Architecture: A Cybersecurity Case Study

eISSN1303-5150 www.neuroquantology.com

we uncovered three multi-class problem-solving
systems. ovr, M (M-1)/2, and SVM formula expansion.
The adapted classifier has the following form.

 (4)

where, 𝜏𝑘 ∈ (0,1) is the weight of each base classifier

𝑓𝑠𝑟𝑐
𝑘 (𝑥), 𝛥𝑓(𝑥) is the perturbation function that is

learnt from a small set of labelled target-domain data in

𝐷𝑡𝑎𝑟
𝑙 . As shown in [27] it has the form:

 (5)

(6)

(7)

where 𝜏𝑘 a weighted sum 𝑦𝑖𝑓𝑠𝑟𝑐
𝑘 (𝑥𝑖) and the

classification performance of the target domain.
Consequently, if we classify the labelled destination
domain info well, we have allocated more massive base
classifiers. With the new decision function provided (4),
(5) and (7) now:

(8)

Compared with (8) a regular SVM model𝑓(𝑥) =

∑𝑖=1 𝑎𝑖𝑦𝑖𝐾(𝑥𝑖, 𝑥), this multi-classification adaptation
model may be interpreted as applying additional
features to the projected labels of the basic classifiers
in the target domain. The scalar B combines the
influence of the initial characteristics and more features
according to this interpretation.
4. RESULTS AND DISCUSSIONS

In this section, we will present the performance of our
proposed malware analysis framework with extensive
experimental results. Scikit-Learn library produced
results with detailed accuracy of each class and
confusion matrix for both binary classifier and multi-
class classifier. For malware analysis, we divided them
into training and testing set. The training set contains
70% of malware samples, and the testing set contains
30% of malware samples.We have used five different
performance metrics, i.e., Accuracy, Precision, Recall, F-
measure and AUC (Area under ROC Curve) to evaluate
the performance of our proposed malware analysis
framework. The performance metrics can be expressed
in terms of TP (True Positive), FP (False Positive), TN
(True Negative) and FN (False Negative).
Exploratory Data Analysis:
Dataset consists of about 8 million rows and 83
columns describing several attributes of Microsoft
devices under consideration. An exploration of the time
series aspect of the problem – As mentioned
previously, malware detection could be viewed as a
time series problem. To visualize this, plots sampling
density over time were drawn for both train and test
data as seen in Fig 2. and Fig 3. respectively. The green
line depicts sampling density over time and the black
line represents the malware detection rate (only for
training data) over time. The following observations can
be made:
• A majority of the train data is from August to October
2018.
• A majority of the test data is from October to
December 2018.
• It is evident that there exists a relation between
detection rate and sampling rate as the detection rate
roughly increases and decreases with sampling rate for
the training data.

3355

NeuroQuantology| November 2022 | Volume 20 | Issue 19 | Page 3350-3358| doi: 10.48047/nq.2022.20.19.NQ99297
B.Swathi et al/ An Efficient Machine Learning-Based Malware Prediction and Classification Architecture: A Cybersecurity Case Study

eISSN1303-5150 www.neuroquantology.com

Figure 2: Train Data - Sampling density versus Time and
Detection density versus Time

Figure 3: Test Data - Sampling density versus Time

The last point indicates that it would be useful to
engineer a feature that can capture the sampling rate
at the time the observation was sampled, as a machine
is more likely to have malware if it is sampled from a
period with a high sampling rate.
Target variable is whether the malware is detected or
not. Figure 4 shows that data is balanced with respect
to target attribute hence no need of up sampling any
class.

Figure 4: Distribution of Target attribute across the

dataset
Figure 5 shows that Detachable devices usually have
SSD, desktop PC have HDD and SDD and Notebooks
usually have HDD.

Figure 5: Correlation between

CensusPrimaryDiskTypeName and
CensusMDC2FormFactor

We can see several interesting things here:
PuaMode and Census_ProcessorClass have 99%+
missing values, which means that these columns are
useless and should be dropped; In Default Browsers
Identifier column 95% values belong to one category,
so we think this column is also useless; There are 26
columns in total in which one category contains 90%
values. we think that these imbalanced columns should
be removed from the dataset.
Fig 6. depicts the feature importance of 20 of the most
important features of the train data for the model.
Note that newly engineered feature ’WeekNo’ is one of
the most important attributes for predicting malware.

3356

NeuroQuantology| November 2022 | Volume 20 | Issue 19 | Page 3350-3358| doi: 10.48047/nq.2022.20.19.NQ99297
B.Swathi et al/ An Efficient Machine Learning-Based Malware Prediction and Classification Architecture: A Cybersecurity Case Study

eISSN1303-5150 www.neuroquantology.com

Figure 6: Feature importance of the 20 most important

features- sourced from the trained LGBM model

Figure 7: Comparison of the classification accuracy with

a RF, LSTM+CNN, SVM and proposed work.
Table 1: Evaluation results of training data and test data

with a baseline and proposed method

Evaluatio
n metric

LSTM+CNN Baseline
LightGBM+ SVM
Proposed

Training
Data

Test
Data

Training
Data

Test
Data

ROC AUC 0.8909 0.9175
0.9211 0.932

2

Time
(msec)

250.109 167.68
189.21 145.7

1

Based on the Table 1, the proposed model area under
the curve for the receiver operating characteristic curve
(ROC) is 93.22% for test data and testing time is
145msec. The evaluation of the metrics table and ROC
curve visualization gives a summary of how the model
performs in general. Figure 8 shows that our method
produces less training and testing time of 189.21msec

and 145.71msec as related to baseline model.The
computational time of our model is around 60 sec for
training on 300 samples and less than 50 ms for testing
on one surface.

Figure 8: Comparison of the training and testing time

using baseline and proposed model
5. CONCLUSION
In this paper, we present a novel malware analysis
framework which can detect and classify malware
efficiently. Our proposed approach uses two different
feature selection algorithms in order to extract most
relevant features which reduces training time and
increases detection and classification accuracy. Given
the relatively good performance of our model we can
conclude that using machine learning techniques to
predict whether a system will soon be hit with malware
could potentially be an excellent preventative measure
in addition to existing security tools. In our proposed
model, we select features based on the feature
importance score generated by the LightBGM model.
From the comparison results, the classification accuracy
of the model proposed (LightGBM+MSVM) in this paper
is higher, reaching 99.12%, which is more advantageous
than other models. The experimental results show that
the method has a good detection effect on network
intrusion detection.
REFERENCES
[1] Canfora, Gerardo &Mercaldo, Francesco

&Visaggio, Corrado Aaron. (2016). An HMM and
structural entropy-based detector for Android
malware: An empirical study. Computers &
Security. 61. 10.1016/j.cose.2016.04.009.

3357

NeuroQuantology| November 2022 | Volume 20 | Issue 19 | Page 3350-3358| doi: 10.48047/nq.2022.20.19.NQ99297
B.Swathi et al/ An Efficient Machine Learning-Based Malware Prediction and Classification Architecture: A Cybersecurity Case Study

eISSN1303-5150 www.neuroquantology.com

[2] Canfora, G., Mercaldo, F., &Visaggio, C. A. (2016).
An HMM and structural entropy-based detector
for Android malware: An empirical study.
Computers & Security, 61, 1-18.

[3] Talha, K. A., Alper, D. I., & Aydin, C. (2015). APK
Auditor: Permission-based Android malware
detection system. Digital Investigation, 13, 1-14.

[4] Lee, Kyungho&Seo, Dongkyun. (2017). Comparing
security vulnerability by operating system
environment. International Journal of Services
Technology and Management. 23. 154.
10.1504/IJSTM.2017.10002715.

[5] Murugan, S. &Kuppusamy, K.. (2011). Malware
And Operating Systems. i-manager's Journal on
Electronics Engineering. 1. 1-4.
10.26634/jele.1.2.1365.

[6] Vinayakumar, R., Alazab, M., Soman, K. P.,
Poornachandran, P., and Venkatraman, S. (2019).
Robust Intelligent Malware Detection Using Deep
Learning. IEEE Access, 7:46717–46738.

[7] Wangoo, D. P. (2018). Artificial Intelligence
Techniques in Software Engineering for Automated
Software Reuse and Design. In 2018 4th
International Conference on Computing
Communication and Automation (ICCCA), pages 1–
4.

[8] Liu, W.; Ci, L.; Liu, L. A New Method of Fuzzy
Support Vector Machine Algorithm for Intrusion
Detection. Appl. Sci. 2020, 10, 1065.

[9] Maalouf, M.; Homouz, D.; Trafalis, T.B. Logistic
regression in large rare events and imbalanced
data: A performance comparison of prior
correction and weighting methods. Comput. Intell.
2018, 34, 161–174.

[10] Bhattacharya, S.; Krishnan, S.S.R.; Maddikunta,
P.K.R.; Kaluri, R.; Singh, S.; Gadekallu, T.R.; Alazab,
M.; Tariq, U. A Novel PCA-Firefly Based XGBoost
Classification Model for Intrusion Detection in
Networks Using GPU. Electronics 2020, 9, 219.

[11] Iqbal, Saba & Ullah, Abrar &Adlan,
Shiemaa&Soobhany, A. (2022). Malware
Prediction Using LSTM Networks. 10.1007/978-
981-16-7618-5_51.

[12] Sarah, Neamat& Rifat, Fahmida & Hossain, Md
Shohrab&Narman, Husnu. (2021). An Efficient
Android Malware Prediction Using Ensemble
machine learning algorithm. Procedia Computer
Science. 191. 184-191.
10.1016/j.procs.2021.07.023.

[13] Zawad, Safir& Evan, Nahian& Mansur, Raiyan&
Asad, Ashub& Hossain, Muhammad Iqbal. (2020).
Analysis of Malware Prediction Based on Infection
Rate Using Machine Learning Techniques.
10.1109/TENSYMP50017.2020.9230624.

[14] Li, Y., Liu, F., Du, Z., & Zhang, D. (2018). A Simhash-
Based Integrative Features Extraction Algorithm
for Malware Detection. Algorithms, 11(8), 124.
https://doi-
org.proxy1.library.eiu.edu/10.3390/a11080124.

[15] Phu, T. N., Tho, N. D., Hoang, L. H., Toan, N. N., &
Binh, N. N. (2021). An Efficient Algorithm to Extract
Control Flow-Based Features for IoT Malware
Detection. Computer Journal, 64(4), 599–609.
https://doi-
org.proxy1.library.eiu.edu/10.1093/comjnl/bxaa08
7.

[16] Yuxin, D., & Siyi, Z. (2019). Malware detection
based on deep learning algorithm. Neural
Computing & Applications, 31(2), 461–472.
https://doi-
org.proxy1.library.eiu.edu/10.1007/s00521-017-
3077-6.

[17] Microsoft, Microsoft Malware Prediction Data
Description, Kaggle. Accessed on: Oct. 11, 2019.
[Online]. Available:
https://www.kaggle.com/c/microsoft-malware-
prediction/data.

3358

