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Abstract— 
Genetic algorithm (GA) is a method that can be used to discover and manage a population of useful patterns in which 
this study implements; specifically, in optimization. This algorithm is a powerful tool to find the best solution in 
problems such as prediction and data fitting due to its ability for fast adaptation in the problem environment. 
Continuous or discrete parameters can be optimized by GA even without requiring derivative information by 
simultaneously searching from a wide sampling of the cost surface even if it deals with large number of parameters. 
The paper makes use of this algorithm to optimize the surface electromyography (SEMG) signal from the skeletal 
muscle force of a transradial amputee in controlling a surface myoelectric prosthesis. The SEMG signals patterns are 
acquired from the two devices: the microcontroller unit and the EMG simulator. The signals from these two devices 
are processed and optimized using GA. The optimized signal is used to test the surface myoelectric prosthesis. In this 
paper are obtain average error in result and simulation section. Now GA gives a better error reduction as compare to 
previous optimization approach. 
Index Terms—Genetic algorithm, optimization, surface electromyography signal (SEMG), surface myoelectric 
prosthesis, T-test. 
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I. INTRODUCTION  
Limb amputation brings emotional and financial crisis 
along with the physical disability. It causes an inability 
to support oneself and the family. In India, nearly 1.4 
million people are upper limb amputees and around 
10,000 added each year [1].  
The upper limb loss is mainly due to trauma with upper 
limb amputations and vascular disease accounted for 
the vast majority (68.6%) of all trauma-related 
amputations [2]. Upper limb amputation is mainly 
divided into four levels: below elbow, above elbow and 
elbow disarticulation, shoulder and hand/wrist. It is 
necessary to use an artificial limb for improving the 
Quality Of Life (QOL) of such people [3].  
EMG SIGNAL CATEGORY 
The development of interfaces that link the human 
musculoskeletal system with robotic devices has been 
a major area of research. Most of the research is 
focused on restoration of motor and sensory functions 
to those with degenerative diseases, injury or 
amputees. The basic goal is to enhance capability for 

independent living and vocational productivity by 
restoring the physical functionality through use of 
prosthesis [4]. 
II. NATURE OF EMG SIGNAL 
 The EMG signal, acquired using surface electrodes, 
measures the potential from some motor units. The 
magnitude of the MUAPs is directly related to the 
contraction of the muscles. The biological explanation 
for the generation of these potentials is called Sodium-
Potassium bomb. When the motoneurone stimulates 
the contraction of the fiber, the membrane of this fiber 
changes its potential. This stimulus is transmitted 
across the membrane. The speed of transmission of 
this stimulus is called conduction speed [5]. 
The magnitude of the signal acquired using surface 
electrodes is from 0.1mV to 5 mV peak to peak. The 
frequency content range varies from 2 Hz to 10 kHz, 
but the most relevant information concerning the 
movement is below 500 Hz. However, the range of the 
magnitude and of the bandwidth of the EMG signal can 
be changed depending on the physiological, 
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anatomical and biochemical characteristics of the 
muscle and the electrode configuration and location. 
An unfiltered and natural signal detecting the 
superposed MUAPs is known as a raw EMG Signal [6].  
A more or less noise-free EMG baseline can be seen 
while relaxation of muscle. The raw EMG baseline 
noise depends on many aspects, especially the 
standard of the EMG amplifier, the atmosphere noise 
and the standard of the given recognition situation. 
The average baseline disturbance should not be more 
than 3mV to 5 mV and 1 mV to 2 mV should be the 
objective while supposing a state-of-the-art amplifier 
efficiency and appropriate skin planning. The research 
of the EMG baseline quality is a very important aspect 
of every EMG statistics [7]. 
III. FACTORS AFFECTING THE MEASURED EMG 
In measuring an EMG signal there are two factors that 
affect the measured signal, namely: the recording 
apparatus used, and the physiological make-up. 
Physiological factors that are affecting the measured 
EMG signal are as follows [8]:  
Fiber distribution  
It is important to consider that the individual fibers are 
not usually located in close proximity to each other, 
but are spread throughout in the muscle. Due to 
different kinds of fibers being distributed throughout 
the muscles, recording electrodes pick up signals from 
many different fibers and from different motor units 
that are firing asynchronously [9].  
Fiber diameter 
 The diameter of a muscle fiber has a direct effect on 
the conduction velocity of the MUAP (Motor Unit 
Action Potential). Conduction velocity is directly 
proportional to the fiber diameter which means larger 
fibers have a greater conduction velocity, and hence 
the MUAP travels faster, elongating the signal, 
increasing the wavelength, or dipole separation of the 
action potential[10]. The concept of wavelength, and 
dipole separation is useful when looking at the 
measurement of EMG using more than one electrode. 
When a measurement is made of several different 
muscle fibers all firing together, even if they are part of 
a single motor unit the variation in fiber diameter can 
have a marked effect on the signal. Fibre diameter 
variations in the order of 10 % change the phase 
relationship of Muscle fiber action potential (MFAP) 
with each other, subtracting instead of adding, and 

give the recorded EMG from the motor unit (MU) a 
poly phase nature [11]. 

IV. PREPROCESSING OF EMG SIGNALS  
Small electrical voltages are produced by muscular 
tissues prior to the development of muscular power. 
These voltages are produced by the exchange of ions 
across muscular fibers membranes, a part of the 
signaling process for muscular tissues to contract. The 
signal called the electromyogram (EMG) can be 
measured by making use of conductive elements or 
electrodes to the surface of the skin, or invasively 
within the muscle. EMG signals can be used in various 
fields that may include clinical diagnosis, managing and 
controlling motor disability through rehabilitation 
engineering, biomedical applications, human machine 
interface systems, and interactive virtual-reality games 
even in many recreational and exercise equipment. 
EMG signal can also be used to find the cause of 
weakness, paralysis or muscle twitching and muscle 
disorders. Since EMG signals have noisy and sensitive 
characteristics so it is difficult to analyze and apply the 
EMG signal on above mentioned fields [12].  
V. SIGNAL PROCESSING OF ELECTROMYOGRAPHY 
DATA 
Raw sEMG data has a Gaussian distribution and must 
be processed to provide information useful for 
exposure estimation. There are currently no standards 
for processing electromyography data, and researchers 
must select processing techniques most relevant to 
their research aims. In occupational studies, the root-
mean-square (RMS) amplitude of the raw sEMG signal 
is often utilized to compute estimates of muscular 
exertion intensity. During digital RMS processing of 
sEMG time series data, windowing parameters are 
selected and RMS values have been calculated from a 
specified number of continuous samples (window 
length), and windows overlap each other by specified 
number of samples (window overlap) for the entire 
time series. Therefore, sEMG data that are digitally 
RMS-processed are effectively down-sampled from the 
original sampling rate. For example, given raw sEMG 
data originally sampled at 1000 Hz RMS-processed 
with a 100 sample window length and a 90 sample 
window overlap, the processed data will have an 
effective sampling rate of 100 Hz. Depending on 
research objectives, alternative signal processing 
techniques may be employed. Spectral analysis is 
another technique utilized to summarize raw sEMG 
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data, which examines sEMG in the frequency domain 
(as opposed to the time domain) [13].  
CROSS TALK  
The bipolar sEMG is not always a selective 
representation of the electrical activity of a single 
muscle directly underlying the recording electrodes. 
With smaller muscles the electrodes may overlook the 
electrical activity of one or more neighboring muscles 
and their signals may crosstalk with the sEMG from the 
desired muscle. While signal sources close to the 
electrode will dominate the recorded sEMG signal, 
more distant sources from other muscles may 
experience crosstalk. Radius about the electrode 
where the amplitude of signal contributions is larger 
than the standard deviation of the signal noise 
provides the distance for effective electrode 
measurement. As the distance from the recording 
electrode increases, the amplitude of the bipolar sEMG 
signal decays exponentially (Day, 1997). This is due to 
the fact that muscle fibres, subcutaneous fat and skin 
are anisotropic and act as a spatial filter with low pass 
frequency properties, where an increase in the 
distance between the muscle fibre and electrode 
increases the filtering effect [14].  
VI. PROPOSED METHODOLOGY 
In signal processing, a finite impulse response (FIR) 
filter is a filter whose impulse response (or response to 
any finite length input) is of finite duration, because it 
settles to zero in finite time. This is in contrast to 
infinite impulse response (IIR) filters, which may have 
internal feedback and may continue to respond 
indefinitely (usually decaying).[15] 
The impulse response (that is, the output in response 
to a Kronecker delta input) of an Nth-order discrete-
time FIR filter lasts exactly N+1 samples (from first 
nonzero element through last nonzero element) 
before it then settles to zero. 
FIR filters can be discrete-time or continuous-time, and 
digital or analog [16]. 
FIR Properties 
 An FIR filter has a number of useful properties which 
sometimes make it preferable to an infinite impulse 
response (IIR) filter. FIR filters:  

 Require no feedback. This means that any rounding 
errors are not compounded by summed iterations. The 
same relative error occurs in each calculation. This also 
makes implementation simpler [17].  

 Inherent stability. This is due to the fact that, 
because there is no required feedback, all the poles are 
located at the origin and thus are located within the 
unit circle (the required condition for stability in a Z 
transformed system) [18].  

 Phase Issue: can easily be designed to be linear phase 
by making the coefficient sequence symmetric; linear 
phase, or phase change proportional to frequency, 
corresponds to equal delay at all frequencies. This 
property is sometimes desired for phase-sensitive 
applications, for example data communications, 
crossover filters, and mastering. 
Implementation issues 
A digital IIR filter can generally approximate a desired 
filter response using less computing power than a FIR 
filter, however this advantage is more often unneeded 
given the increasing power of digital processors. The 
ease of designing and characterizing FIR filters makes 
them preferable to the filter designer (programmer) 
when ample computing power is available. Another 
advantage of FIR filters is that their impulse response 
can be made symmetric, which implies a response in 
the frequency domain that has zero phase at all 
frequencies (not considering a finite delay), which is 
absolutely impossible with any IIR filter [19]. 
The finite impulse response digital filter has the 
characteristics of absolute stability, and it is easy to 
design directly according to the impulse response 
technical conditions; it can achieve a symmetrical 
impulse response while approaching any amplitude 
characteristic; it can achieve strict linear phase 
characteristics. Because it has the above advantages, it 
is widely used in data communication and digital 
communication systems [20]. 
SIGNAL Optimization 
In a genetic algorithm, a population of candidate 
solutions (called individuals, creatures, organisms, 
or phenotypes) to an optimization problem is evolved 
toward better solutions. Each candidate solution has a 
set of properties (its chromosomes or genotype) which 
can be mutated and altered; traditionally, solutions are 
represented in binary as strings of 0s and 1s, but other 
encodings are also possible [21]. 
The evolution usually starts from a population of 
randomly generated individuals, and is an iterative 
process, with the population in each iteration called 
a generation. In each generation, the fitness of every 
individual in the population is evaluated; the fitness is 
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usually the value of the objective function in the 
optimization problem being solved. The more fit 
individuals are stochastically selected from the current 
population, and each individual's genome is modified 
(recombined and possibly randomly mutated) to form 
a new generation. The new generation of candidate 
solutions is then used in the next iteration of 
the algorithm. Commonly, the algorithm terminates 
when either a maximum number of generations has 
been produced, or a satisfactory fitness level has been 
reached for the population [22]. 
A typical genetic algorithm requires: 

1. a genetic representation of the solution 
domain, 

2. a fitness function to evaluate the solution 
domain. 

A standard representation of each candidate solution 
is as an array of bits (also called bit set or bit 
string).[4] Arrays of other types and structures can be 
used in essentially the same way. The main property 
that makes these genetic representations convenient is 
that their parts are easily aligned due to their fixed 
size, which facilitates simple crossover operations. 
Variable length representations may also be used, but 
crossover implementation is more complex in this 
case. Tree-like representations are explored in genetic 
programming and graph-form representations are 
explored in evolutionary programming; a mix of both 
linear chromosomes and trees is explored in gene 
expression programming [23-30]. 

 
Fig.1 Flowchart. 

VII. RESULT AND SIMULATION 
The generated signal from the signal processor using 
MATLAB and the simulated signals using EMG analysis 
such as the poly or linear GA are plotted using MATLAB 
toolbox, which are represented by the dashed lines 
and smooth line respectively, shown in the figures 
below. This analysis is only filter oriented and analysis 
is without any data sets (signal is self-Generated in 
MATLAB coding).  

 
Fig. 2 Filter response. 
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Table 1.Define parameters. 
 

 
 
 

 
Table 2.Comparison between previous and proposed 

method results-  
Fig. 3 Filter stability. 

 
Fig. 4 GA Optimized response. 

 
Fig. 5 Power spectrum Density. 

 
 
VIII. CONCLUSION 
In this paper, a new FIR and GA algorithm is proposed 
and successfully applied to low sampling rate 
sEMGgesture recognition. In order to improve the 
adaptability of gesture recognition technique, a new 
mutation probability calculation method is defined in 
particle mutation, which can effectively solve the 
premature problem of GA. In the aspect of feature 

S.N. Previous method average 
Error  

proposed 
method  
average Error 

1. 2.5000e-04 [30] 2.705e-08 

S.N. Parameters Values  

1 Passband edge 
 

0.13Hz 
 

2 Stopband edge 
 

0.14 Hz 

3 Passband ripple 
 

0.001 

4 stopband ripple 
 

0.0005 

5 Passband Frequency 
 

0.45 Hz 

6 Stopband Frequency 
 

0.55 Hz 

7 Passband Attenuation 
(dB) 
 

1 

8 Stopband Attenuation 
(dB) 
 

60 
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extraction, five features with a high correlation to 
muscle contraction have been selected. This 
combination of calculations is simple and fast and can 
effectively obtain the sEMG signal information. The 
genetic algorithm is used to solve the problem of high 
dimension and redundancy of multichannel sEMG 
signals, which effectively reduces the complexity of 
subsequent classification. -e comparisons of results 
show that the algorithm is capable of recognizing the 
sEMG signals with sampling rate accurately. It provides 
an effective method for gesture recognition of low 
sampling rate sEMG signal. 
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