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Abstract-  
In this research, we investigate the Laplace-Differential Transform method (LDTM) for solving the non-
linear Reaction-Diffusion equation and provide our findings for both exact and approximation solutions 
as well as numerical solutions. In the time domain, we use the Laplace transform, and in the spatial 
domain, we use the differential transform with initial and boundary conditions. Unlike conventional 
methods, which typically include integration, we discover that this approach only necessitates 
straightforward differentiation and a few elementary operations for the result. The computational 
domain can be considerably reduced with this strategy, and only a small number of iterations are 
needed to provide closed-form answers in the form of series expansions of certain known functions. 
Numerous examples are provided to illustrate the technique's usefulness and effectiveness. Conclusions 
are reliable, and the computational effort required was less than that of some prior investigations. 
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1. Introduction- The field of nonlinear sciences 
has had huge advancement lately, bringing 
about the development of various logical and 
mathematical strategies that have tracked 
down application in assorted designing and 
logical spaces. Various mathematical 
frameworks and logical methods have been 
introduced for the arrangement of differential 
conditions across many sorts. The direct 

response dissemination condition is a fractional 
differential condition used to portray the 
elements of an amount, like focus, 
temperature, or populace thickness. This 
condition represents both dissemination and a 
direct response in the framework. The straight 
response dispersion condition in one aspect can 
be communicated in a general structure as 
follows: 

𝜕𝑦

𝜕𝑡
= 𝐷

𝜕2𝑦

𝜕𝑥2
+ 𝑅(𝑢) 
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Where 𝑦 is a dependent variable, 𝑡 is time, 𝑥 is 
spatial variable, 𝐷 is the diffusion coefficient 
and 𝑅(𝑢) is linear term. 

In nonlinear reaction-diffusion 
equations, the reaction term does not directly 

proportionately change when the dependent 
variable changes. A one-dimensional nonlinear 
reaction-diffusion equation can be written in 
the form: 

𝜕𝑦

𝜕𝑡
= 𝐷

𝜕2𝑦

𝜕𝑥2
+ 𝐹(𝑢) 

Where 𝑦 is a dependent variable, 𝑡 is time, 𝑥 is spatial variable, 𝐷 is the diffusion coefficient and 𝐹(𝑢) is 
nonlinear term. 

While tackling straight standard 
differential conditions, the Laplace Change is a 
significant numerical instrument. It has more 
trouble being utilized with nonlinear conditions. 
As a crossover of the Laplace transform and the 
Differential transform method (DTM), the 
Laplace differential transform method (LDTM) 
can be utilized to settle various halfway 
differential conditions, including response 
dissemination conditions, in both the direct and 
nonlinear systems. 

To tackle non-homogeneous straight 
PDEs, Alquran et al. (2012) used a mixture 
variant of the Laplace transform method (LTM) 
and the differential transform method (DTM). 
Non-homogeneous straight incomplete 
differential conditions with a variable 
coefficient can be settled utilizing the blend 
method.Utilizing common and postpone 
differential conditions, Rihan and Rahman 
(2013) researched the elements between a 
malignant growth and the resistant 
arrangement of solid effector cells with regards 
to the human immunodeficiency 
infection.Polynomial differential quadrature 
procedure (PDQM) was utilized by Jiwari et al. 
(2014) to explore summed up FN conditions 
with time-subordinate coefficients in 
1D.Utilizing the Laplace-Differential transform 
method (LDTM) and Pad'e estimation, Kumari 
and Gupta (2016) examined rough insightful 
arrangements of homogeneous direct PDEs 
with introductory circumstances.Numerous 
issues in designing and the applied sciences 
include waves, consequently Kumari et al. 
(2016) utilized the Differential transform 
method (DTM) related to the Laplace transform 
method to tackle wave conditions and wave-like 
conditions. The outcomes show that the 

proposed technique is compelling and gives 
quickly meeting series arrangements.By 
building the functional network of partial 
subordinate, Kumar et al. (2019) tackled the 
partial request non-straight response dispersion 
issue utilizing the collocation technique. They 
did this by approximating any capability by 
utilizing the essential meanings of fragmentary 
request subsidiaries, the Genocchi polynomial, 
and the properties of the Kronecker result of 
frameworks.Utilizing response dissemination 
conditions and two particular three-layered 
mathematical recreations, Jaroudi et al. (2020) 
researched a model of mind growth movement. 
To settle the perplexing conditions overseeing 
smooth motion in permeable media, Temitayo 
Sheriff and Ibukun Joel (2020) presented 
another strategy (a cross breed of the Laplace 
and Differential changes) that yields answers 
that are both straightforward and extremely 
exact. The obtained results approve the 
adequacy, proficiency, and common sense of 
the proposed technique.The novel Covid 
(Coronavirus) pandemic in China, Spain, and 
Italy enlivened Laib et al. (2021) to make a 
mathematical model for the conventional type 
of an arrangement of nonlinear Volterra delay 
integro-differential conditions.For Giesekus 
viscoelastic stream issues, Lee and Lee (2021) 
presented the least-squares limited component 
arrangement utilizing a versatile lattice.Li et al. 
(2021) utilized nonlinear incomplete differential 
conditions, the qualities strategy, and a blended 
limited volume component to show two-stage 
compressible removal issues.To rough Fisher's 
response dissemination condition, Tamsir and 
Huntul (2021) recommended a half breed 
mathematical methodology. Differential 
quadrature method (DQM) and cubic uniform 

4103



NEUROQUANTOLOGY | OCTOBER 2022 | VOLUME 20 | ISSUE 12| PAGE 4102-4111| DOI: 10.48047/NQ.2022.20.12.NQ77736 
Rajesh Kumar et al/ Applications of the Laplace differential transform method to the solution of linear and nonlinear reaction diffusion 
equations 

eISSN1303-5150                                                                                                                                                        www.neuroquantology.com                                                                                              
 

algebraic trigonometric (CUAT),tension B-spline 
capabilities structure the premise of the 
method. Weighting coefficients are registered 
in DQM through the CUAT tension B-spline, 
decreasing Fisher's response dispersion 
condition to an arrangement of normal 
differential conditions.The competitive 

dynamics in biological populations were 
modeled by Gortsas et al. (2022) using the 
nonlinear Fisher-KPP diffusion-reaction 
equation. The Boundary element method (BEM) 
was also developed as a reliable numerical 
approach to solve diffusion problems. 

2. Basic idea of LDTM:If 𝑢(𝑥, 𝑡)is a function, then its differential transform in one variable is given by: 

𝑌𝑘(𝑡) =
1

𝑘!
[

𝜕𝑘𝑦

𝜕𝑥𝑘]
𝑥=𝑎

; 𝑘 ≥ 0         (1) 

where 𝑦(𝑥, 𝑡) represents the unaltered function and 𝑌𝑘(𝑡) represents the converted function. 
What is the definition of the inverse differential transform of 𝑈𝑘(𝑡) 

𝑦(𝑥, 𝑡) = ∑ 𝑌𝑘(𝑡)(𝑥 − 𝑎)𝑘∞
𝑘=0         (2) 

where 𝑎 represents the starting position in the provided setup. If so, we can express 𝑦(𝑥, 𝑡)as 

𝑦(𝑥, 𝑡) = ∑ 𝑌𝑘(𝑡)𝑥𝑘∞
𝑘=0           (3) 

We analyze the general form of linear and non-linear reaction diffusion equations in this study to 
demonstrate the principle behind the Laplace differential transform method. 
𝜕𝑦

𝜕𝑡
= 𝐷

𝜕2𝑦

𝜕𝑥2 + 𝑓(𝑥, 𝑡, 𝑦, 𝑦2)          (4) 

𝑦(𝑥, 0) = ℎ1(𝑥), 𝑦(0, 𝑡) = ℎ2(𝑡), 𝑦𝑥(0, 𝑡) = ℎ3(𝑡)      (5) 
Applying the Laplace transformation with respect to time (𝑡) to equation (4) is the first step in the 
Laplace differential transform method, yielding the following: 

𝑠𝐿{𝑦(𝑥, 𝑡)} − 𝑦(𝑥, 0) = 𝐿 {
𝜕2𝑦

𝜕𝑥2
+ 𝑓} 

𝑠𝐿{𝑦(𝑥, 𝑡)} = 𝐿 {
𝜕2𝑦

𝜕𝑥2
+ 𝑓} 

𝑠𝐿{𝑦(𝑥, 𝑡)} = ℎ1(𝑥) + 𝐿 {
𝜕2𝑦

𝜕𝑥2
+ 𝑓} 

𝐿{𝑦(𝑥, 𝑡)} =
1

𝑠
ℎ1(𝑥) +

1

𝑠
𝐿 {

𝜕2𝑦

𝜕𝑥2 + 𝑓}        (6) 

Now, if we take both sides of equation (6) and apply the inverse Laplace transformation with respect to 
𝑠, we get: 

𝑦(𝑥, 𝑡) = ℎ1(𝑥)𝑔(𝑡) + 𝐿−1 [
1

𝑠
𝐿 {

𝜕2𝑦

𝜕𝑥2 + 𝑓}]       (7) 

After plugging equations (7) into a differential transform with respect to the 𝑥-axis, we get 
𝑌0(𝑡) = ℎ2(𝑡), 𝑌1(𝑡) = ℎ3(𝑡)         (8) 

𝑌𝑘(𝑡) = 𝑔(𝑡)𝐷𝑇𝑀[ℎ1(𝑥)] + 𝐿−1 [
1

𝑠
𝐿{(𝑘 + 1)(𝑘 + 2)𝑈𝑘+2(𝑡) + 𝐷𝑇𝑀[𝑓]}] 

𝐿−1 [
1

𝑠
𝐿{(𝑘 + 1)(𝑘 + 2)𝑌𝑘+2(𝑡) + 𝐷𝑇𝑀[𝑓]}] = 𝑌𝑘(𝑡) − 𝑔(𝑡)𝐷𝑇𝑀{ℎ1(𝑥)} 

[
1

𝑠
𝐿{(𝑘 + 1)(𝑘 + 2)𝑈𝑘+2(𝑡) + 𝑌𝑘(𝑡)}] = 𝐿[𝑌𝑘(𝑡) − 𝑔(𝑡)𝐷𝑇𝑀{ℎ1(𝑥)}] 

𝐿{(𝑘 + 1)(𝑘 + 2)𝑌𝑘+2(𝑡)} = 𝑠𝐿[𝑌𝑘(𝑡) − 𝑔(𝑡)𝐷𝑇𝑀{ℎ1(𝑥)}] − 𝐿[𝑌𝑘(𝑡)] 

𝑌𝑘+2(𝑡) =
1

(𝑘+1)(𝑘+2)
𝐿−1[𝑠𝐿[𝑌𝑘(𝑡) − 𝑔(𝑡)𝐷𝑇𝑀{ℎ1(𝑥)}] − 𝐿[𝑌𝑘(𝑡)]]   (9) 

Using equation (9), we get the values of 𝑌0(𝑡), 𝑌1(𝑡), 𝑌2(𝑡), .. and putting these values in the following 
equation 

𝑦(𝑥, 𝑡) = ∑ 𝑌𝑘(𝑡)

∞

𝑘=0

𝑥𝑘 = 𝑌0(𝑡) + 𝑌1(𝑡)𝑥 + 𝑌2(𝑡)𝑥2 + 𝑌3(𝑡)𝑥3 + 𝑌4(𝑡)𝑥4 + 𝑌5(𝑡)𝑥5 + ⋯ 
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3. Application of LDTM:As an example of LDTM's versatility, we have used it to solve linear and 
nonlinear response diffusion equations. The ability to use two different approaches to find both 
accurate and approximate solutions is a major strength of this strategy. 

Test Problem 3.1:
𝜕𝑦

𝜕𝑡
= 𝐷

𝜕2𝑦

𝜕𝑥2 + 𝑦 + 𝑒𝑡𝑠𝑖𝑛𝑥; 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 ≤ 1 and 𝐷 = 1  (10) 

with these parameters as the starting point and endpoint: 
𝑦(𝑥, 0) = 𝑠𝑖𝑛𝑥, 𝑦(0, 𝑡) = 0, 𝑦𝑥(0, 𝑡) = 𝑒𝑡       (11) 
Applying the Laplace transformation with regard to time to equation (10) and plugging in the initial 
condition from equation (11) yields the result expected from the Laplace differential transform 
approach. 

𝑠𝐿{𝑦(𝑥, 𝑡)} − 𝑦(𝑥, 0) = 𝑠𝑖𝑛𝑥
1

𝑠 − 1
+ 𝐿 {

𝜕2𝑦

𝜕𝑥2
+ 𝑦} 

𝑠𝐿{𝑦(𝑥, 𝑡)} − 𝑠𝑖𝑛𝑥 = 𝑠𝑖𝑛𝑥
1

𝑠 − 1
+ 𝐿 {

𝜕2𝑦

𝜕𝑥2
+ 𝑦} 

𝐿{𝑦(𝑥, 𝑡)} = 𝑠𝑖𝑛𝑥
1

𝑠−1
+

1

𝑠
𝐿 {

𝜕2𝑦

𝜕𝑥2 + 𝑦}       (12) 

Taking both sides of (12) and applying the Inverse Laplace transformation with regard to 𝑠, we get: 

𝑦(𝑥, 𝑡) = 𝑒𝑡𝑠𝑖𝑛𝑥 + 𝐿−1 [
1

𝑠
𝐿 {

𝜕2𝑦

𝜕𝑥2 + 𝑦}]       (13) 

When we use the Differential transformation technique to solve equations (13) with respect to the 
spatial variable (𝑥), we get 

𝑌0(𝑡) = 0, 𝑌1(𝑡) = 𝑒𝑡 

𝑌𝑘(𝑡) = 𝑒𝑡 1

𝑘!
𝑠𝑖𝑛

𝑘𝜋

2
+ 𝐿−1 [

1

𝑠
𝐿{(𝑘 + 1)(𝑘 + 2)𝑌𝑘+2(𝑡) + 𝑌𝑘(𝑡)}]  

𝑌𝑘+2(𝑡) =
1

(𝑘+1)(𝑘+2)
𝐿−1 [𝑠𝐿 {𝑌𝑘(𝑡) − 𝑒𝑡 1

𝑘!
𝑠𝑖𝑛

𝑘𝜋

2
} − 𝐿{𝑌𝑘(𝑡)}]   (14) 

Putting  𝑘 = 0, 𝑘 = 1, 𝑘 = 2, …in equation (14), we get 

𝑌2(𝑡) = 0, 𝑌3(𝑡) = −
𝑒𝑡

3!
, 𝑌4(𝑡) = 0, 𝑌5(𝑡) =

𝑒𝑡

5!
… 

Putting the value of 𝑌0(𝑡), 𝑌1(𝑡), 𝑌2(𝑡), ..  in the following equation 

𝑦(𝑥, 𝑡) = ∑ 𝑌𝑘(𝑡)

∞

𝑘=0

𝑥𝑘 = 𝑌0 + 𝑌1𝑥 + 𝑌2𝑥2 + 𝑌3𝑥3 + 𝑌4𝑥4 + 𝑌5𝑥5 + ⋯ 

𝑦(𝑥, 𝑡) = ∑ 𝑌𝑘(𝑡)∞
𝑘=0 𝑥𝑘 = 𝑒𝑡𝑥 −

𝑒𝑡

3!
𝑥3 +

𝑒𝑡

5!
𝑥5 + ⋯ = 𝑒𝑡 (𝑥 −

𝑥3

3!
+

𝑥5

5!
+ ⋯ ) = 𝑒𝑡𝑠𝑖𝑛𝑥  (15) 

Test Problem 3.2:
𝜕𝑦

𝜕𝑡
= 𝐷

𝜕2𝑦

𝜕𝑥2 − 0.5𝑦;  0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 ≤ 1 and 𝐷 = 1 

with these parameters as the starting point and endpoint: 

𝑦(𝑥, 0) = 𝑠𝑖𝑛𝜋𝑥, 𝑦(0, 𝑡) = 0, 𝑦𝑥(0, 𝑡) = 𝜋𝑒(−0.5−𝜋2)𝑡     (16) 
Laplace's method of differential transformation states that we should first apply the Laplace 
transformation with regard to time, t, to equation (16), which yields 

𝑠𝐿{𝑦(𝑥, 𝑡)} − 𝑦(𝑥, 0) = 𝐿 {
𝜕2𝑦

𝜕𝑥2
− 0.5𝑦} 

𝑠𝐿{𝑦(𝑥, 𝑡)} − 𝑠𝑖𝑛𝜋𝑥 = 𝐿 {
𝜕2𝑦

𝜕𝑥2 − 0.5𝑦}  

Applying the Inverse Laplace transformation with respect to 𝑠 to both sides of Equation (16) yields the 
following: 

𝑦(𝑥, 𝑡) = 𝑠𝑖𝑛𝜋𝑥 + 𝐿−1 [
1

𝑠
𝐿 {

𝜕2𝑦

𝜕𝑥2 − 0.5𝑦}]       (17) 

Equations (17) are then transformed using the differential approach with respect to the spatial variable 
𝑥, yielding 
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𝑌0(𝑡) = 0, 𝑌1(𝑡) = 𝜋𝑒(−0.5−𝜋2)𝑡 = 𝜋𝑒𝑎𝑡 

𝑌𝑘(𝑡) =
𝜋𝑘

𝑘!
𝑠𝑖𝑛

𝑘𝜋

2
+ 𝐿−1 [

1

𝑠
𝐿{(𝑘 + 1)(𝑘 + 2)𝑌𝑘+2(𝑡) − 0.5𝑌𝑘(𝑡)}] 

(𝑘 + 1)(𝑘 + 2)𝑌𝑘+2(𝑡) = 𝐿−1 [𝑠𝐿 {𝑌𝑘(𝑡) −
𝜋𝑘

𝑘!
𝑠𝑖𝑛

𝑘𝜋

2
} + 0.5𝐿{𝑌𝑘(𝑡)}] 

𝑌𝑘+2(𝑡) =
1

(𝑘+1)(𝑘+2)
𝐿−1 [𝑠𝐿 {𝑌𝑘(𝑡) −

𝜋𝑘

𝑘!
𝑠𝑖𝑛

𝑘𝜋

2
} + 0.5𝐿{𝑌𝑘(𝑡)}]    (18) 

Putting  𝑘 = 0, 𝑘 = 1, 𝑘 = 2, …in equation (18), we get 

𝑌2(𝑡) = 0, 𝑌3(𝑡) = −
𝜋3

3!
𝑒𝑎𝑡, 𝑌4(𝑡) = 0, 𝑌5(𝑡) =

𝜋5

5!
𝑒𝑎𝑡, .. 

Putting the value of 𝑌0(𝑡), 𝑌1(𝑡), 𝑌2(𝑡), ..  in the following equation 

𝑦(𝑥, 𝑡) = ∑ 𝑌𝑘(𝑡)

∞

𝑘=0

𝑥𝑘 = 𝑌0 + 𝑌1𝑥 + 𝑌2𝑥2 + 𝑌3𝑥3 + 𝑌4𝑥4 + 𝑌5𝑥5 + ⋯ 

𝑦(𝑥, 𝑡) = ∑ 𝑌𝑘(𝑡)∞
𝑘=0 𝑥𝑘 = 𝑒𝑎𝑡 (𝜋𝑥 −

𝜋3𝑥3

3!
+

𝜋5𝑥5

5!
+ ⋯ ) = 𝑒𝑎𝑡 sinπx = 𝑒(−0.5−𝜋2)𝑡𝑠𝑖𝑛𝜋𝑥 (19) 

Test Problem 3.3:The equation for non-homogeneous non-linear reaction diffusion 
𝜕𝑦

𝜕𝑡
= 𝐷

𝜕2𝑦

𝜕𝑥2 − 𝑦2 + 2𝑥2𝑡 − 2𝑥𝑡2 + 𝑥5𝑡5       (20) 

when beginning and boundary conditions are present 
𝑦(𝑥, 0) = 0, 𝑦(0, 𝑡) = 0, 𝑦𝑥(0, 𝑡) = 0       (21) 
Using the beginning conditions in (21), we obtain the Laplace transformation with respect to 𝑡 on 
equation (20) by first performing the Laplace transformation. 

𝑠𝐿{𝑦(𝑥, 𝑡)} − 𝑦(𝑥, 0) =
2𝑥2

𝑠2
−

4𝑥

𝑠3
+

120𝑥5

𝑠6
+ 𝐿 {

𝜕2𝑦

𝜕𝑥2
− 𝑦2} 

𝐿{𝑦(𝑥, 𝑡)} =
2𝑥2

𝑠3 −
4𝑥

𝑠4 +
120𝑥5

𝑠7 +
1

𝑠
𝐿 {

𝜕2𝑦

𝜕𝑥2 − 𝑦2}      (22) 

Assuming this for the time being, we do the Inverse Laplace transformation with respect to 𝑠 on both 
sides of equation (22). 

𝑦(𝑥, 𝑡) = 𝑥2𝑡2 −
2𝑥𝑡3

3
+

𝑥5𝑡6

6
+ 𝐿−1 [

1

𝑠
𝐿 {

𝜕2𝑦

𝜕𝑥2 − 𝑦2}]      (23) 

Differential transformations applied to equations (23) with respect to the spatial variable ′𝑥′ yield 
𝑌0(𝑡) = 0, 𝑌1(𝑡) = 0 

𝑌𝑘(𝑡) = 𝑡2𝛿(𝑘 − 2) −
2𝑡3

3
𝛿(𝑘 − 1) +

𝑡6

6
𝛿(𝑘 − 5)

+ 𝐿−1 [
1

𝑠
𝐿 {(𝑘 + 1)(𝑘 + 2)𝑌𝑘+2(𝑡) − ∑ 𝑌𝑖(𝑡)

𝑘

𝑖=0

𝑌𝑘−𝑖(𝑡)}] 

(𝑘 + 1)(𝑘 + 2)𝑌𝑘+2(𝑡) = ∑ 𝑌𝑖(𝑡)𝑘
𝑖=0 𝑌𝑘−𝑖(𝑡) + 𝐿−1 [𝑠𝐿 {𝑌𝑘(𝑡) − 𝑡2𝛿(𝑘 − 2) +

2𝑡3

3
𝛿(𝑘 − 1) −

𝑡6

6
𝛿(𝑘 − 5)}]           (24) 

Putting  𝑘 = 0, 𝑘 = 1, 𝑘 = 2, …in equation (24), we get 

𝑌2(𝑡) = 0, 𝑌3(𝑡) =
𝑡2

3
, 𝑌4(𝑡) = −

𝑡

6
, 𝑌5(𝑡) =

𝑡

30

′

, … 

Putting the value of 𝑌0(𝑡), 𝑌1(𝑡), 𝑌2(𝑡), ..  in the following equation 

𝑦(𝑥, 𝑡) = ∑ 𝑌𝑘(𝑡)

∞

𝑘=0

𝑥𝑘 = 𝑌0 + 𝑌1𝑥 + 𝑌2𝑥2 + 𝑌3𝑥3 + 𝑌4𝑥4 + 𝑌5𝑥5 + ⋯ 

𝑦(𝑥, 𝑡) = ∑ 𝑌𝑘(𝑡)∞
𝑘=0 𝑥𝑘 =

𝑡2

3
𝑥3 −

𝑡

10
𝑥4 +

𝑡

30
𝑥5 − ⋯     (25) 

4. Numerical Results: 
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From 𝑡 = 0 to 𝑡 = 1 and 𝑥 = 0 to 𝑥 = 1, the 
LTDM 3D solution for (3.1) of equation (15) is 
shown in graph (1).  The LTDM and MATLAB 
numerical solutions to (3.1) for 𝑡 =
0, 0.1,0.2,0.3,0.4 are depicted in graph (2).With 
the current selection of 𝑡 and 𝑥, the LDTM for 
the reaction diffusion equation is accurate 
within a manageable range, with absolute 
errors being quite minor. The graph (2) shows 
that there is no discernible difference between 
the two solutions, both of which were obtained 
using MATLAB.For the test issue (3.2) of 
equation (19), the LTDM 3D solution is shown in 

figure (3) from 𝑡 = 0 to 𝑡 = 1 and 𝑥 = 0 to 𝑥 =
1.  The LTDM and MATLAB numerical solutions 
to (3.2) for 𝑡 = 0, 0.1,0.2,0.3,0.4 are depicted in 
graph (4).By adjusting 𝑡 and 𝑥, the LDTM for the 
reaction diffusion equation achieves a high 
degree of precision, with very small absolute 
errors. The graph (4) shows that there is no 
discernible difference between the two 
solutions, both of which were obtained using 
MATLAB.The LTDM-derived 3D solution for the 
test problem (3.3) from = 0 to 𝑡 = 1 and 𝑥 = 0 
to 𝑥 = 1 is depicted in Graph (5).  The LTDM 
approximation and the MATLAB numerical 
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solution to (3.3) for 𝑡 = 0.1,0.2,0.3,0.4 are 
shown in Graph (6).Absolute errors are now 
quite modest with the current selection of 𝑡 and 
𝑥, and the LDTM's accuracy for the reaction 
diffusion equation is under your control. Both 
sets of findings are obtained using MATLAB, and 
when compared using graph (6), it is clear that 
there is no discernible difference between the 
two approaches. 
5. Concluding Remarks:The reaction-diffusion 
equation is a useful model for many systems in 
engineering, science, and other disciplines. The 
differential transformation approach is 
investigated in this paper as a means of solving 
the reaction-diffusion equations. Three 
boundary value problems are solved using this 
technique. We solved every one of these 
problems using exact series computation in 
closed form. Approximations of better accuracy 
and closed form solutions, if they exist, can be 
obtained using the differential transformation 
approach, which is both powerful and efficient. 
It has been found that this strategy is a 
powerful and trustworthy resource for dealing 
with issues of this nature.  Our example also 
shows that the effective method can be used as 
an alternative to traditional approaches to 
solving higher-order linear and non-linear 
starting and boundary value issues. The findings 
demonstrate that LDTM is an effective 
mathematical tool for solving linear and 
nonlinear partial differential equations, and so 
has broad applications in engineering. The 
LDTM series are calculated in MATLAB for this 
work. To better understand what factors must 
be present for solutions to non-linear Reaction-
diffusion equations to converge, a new 
approach for the Laplace differential transform 
method is described here. The procedure 
described here can be used to resolve a 
problem with either beginning or boundary 
values. If closed form solutions exist, the LDTM 
provides approximations with improved 
precision and quantitatively reliable findings. 
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