

Regular Spaces Associated with p*gb-Open Sets

I. ARUNA GLORY SUDHA¹

Research Scholar, Registration No:21212152092002,

Department of Mathematics, Nazareth Margoschis College at Pillaiyanmanai, Nazareth,

Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamilnadu, India

S. ZION CHELLARUTH²

Assistant Professor, Department of Mathematics,

Nazareth Margoschis College at Pillaiyanmanai, Nazareth,

Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamilnadu, India.

Abstract

Using the paradigm of pre star generalized b-closed and pre star generalized b-open sets, we present and investigate pre star generalized b-regular spaces.

AMS Subject Classification: 54A05

Keywords: p*gb-open, p*gb-closed, p*gb-regular. DOINumber: 10.48047/nq.2022.20.19.nq99473

NeuroQuantology 2022;20(19):5089-5094

5089

1.Introduction

Pre*-closed sets were given and some of their characteristics were explored by T. Selvi and A. PunithaDharani [3] in 2012. Pre*-generalized b-closed and pre*-generalized b-open sets are characterised in [4]. Pre* generalised b-regular and strongly p*gb-regular and weakly p*gb-regular spaces, respectively, are described and investigated in this study using p*gb-open and p*gb-closed sets.

2.Preliminaries

Definition 2.1.[1] In X, A subset M is called

(i)b-open if M⊆Int(Cl(M))∪Cl(Int(M))

(ii)b-closed if $Int(Cl(M))\cap Cl(Int(M)) \subseteq M$.

Definition 2.2.[1] b-closure of A, denoted by $bCl(A)=\bigcap\{H:A\subseteq H \text{ and } H \text{ is } b\text{-closed}\}$.

Definition 2.3. [3] A subset M of the space X is called

(i)pre*-open if $M \subseteq int*(Cl(M))$

(ii) pre*-closed if $Cl*(Int(M)) \subseteq M$.

Definition 2.4.[4] A pre* generalized b-closed set (briefly, p*gb-closed) is a subset A of a Space (X, τ) if bCl(A) U, whenever A \subseteq U, U is pre*-open in (X, τ).

Lemma 2.5.[4]For a topological space (X, τ), Every open set is p*gb-open.

Lemma 2.6. [4]

- (a) Arbitrary intersection of p*gb-closed sets is p*gb-closed.
- (b) Arbitrary union of p*gb-open sets is p*gb-open.

elSSN1303-5150

Remark 2.7.[4]

(a) The union of p*gb-closed sets need not be p*gb-closed.

(b) The intersection of p*gb-open sets is p*gb-open.

Definition 2.8.[5] Let X be a topological space and let $x \in X$. A subset N of X is said to be a p*gb-neighbourhood (shortly, p*gb-nbhd) of x if there exists a p*gb-open set U such that $x \in U \subseteq N$.

Theorem 2.9.[5] Every nbhd N of $x \in X$ is a p*gb-nbhd of x.

Definition 2.10.[5] Let A be a subset of a topological space (X, τ) . Then the union of all p*gb-open sets contained in A is called the p*gb-interior of A and it is denoted by p*gbInt(A). That is, p*gbInt(A)=U{V:V_A and V \in p*gb-O(X)}.

Theorem 2.11.[5] Let A be a subset of a topological space (X, τ) . Then

- (a) p*gbInt(A) is the largest p*gb-open set contained in A.
- (b) A is p*gb-open if and only if p*gbInt(A)=A.
- (c) $p*gbInt(\phi)=\phi$ and p*gbInt(X)=X.
- (d) If $A \subseteq B$, then $p^*gbInt(A) \subseteq p^*gbInt(B)$.
- (e) p*gbInt(p*gbInt(A))=p*gbInt(A).

Definition 2.12.[5] Let A be a subset of a topological space (X, τ) . Then the intersection of all p*gb-closed sets in X containing A is called the p*gb-closure of A and it is denoted by p*gbCl(A). That is, p*gbCl(A)= \cap {F:A \subseteq F and F \in p*gb-C(X)}. The intersection of p*gb-closed set is p*gb-closed, then p*gbCl(A) is p*gb-closed.

Theorem 2.13.[5] Let A be a subset of a topological space (X, τ). Then

- (a) p*gbCl(A) is the smallest p*gb-closed set containing A.
- (b) A is p*gb-closed if and only if p*gbCl(A)=A.
- (c) $p*gbCl(\phi)=\phi$ and p*gbCl(X)=X.
- (d) If $A \subseteq B$, then $p^*gbCl(A) \subseteq p^*gbCl(B)$.
- (e) p*gbCl(p*gbCl(A))=p*gbCl(A).

Definition 2.14[6]. A topological space X is quasi H-closed if every open cover has a finite proximate subcover. That is, every open cover has a finite subfamily whose closures cover the space.

Definition 2.15[6]. A topological space (X, τ) is said to be **regular** if for each closed set A and a point $x \notin A$, there exist disjoint open sets U and V such that $A \subseteq U$, $x \in V$.

elSSN1303-5150

5090

3. p*gb-Regular Spaces

Definition 3.1. A Space X is called **p*gb-regular** if for each p*gb-closed set G and a point $t \notin G$, \exists separate p*gb-open sets A and B \ni : G \subseteq A, $t \in$ B.

Example 3.2.Let X ={1, 2, 3} and τ = { ϕ , {1}, {2}, {1, 2}, X}. In this space X, the p*gb-open sets are ϕ , {1}, {2}, {1, 2}, {1, 3}, {2, 3}, X and the p*gb-closed sets are ϕ , {1}, {2}, {3}, {1, 3}, {2, 3}, X. Then X is p*gb-regular space.

Theorem 3.3. The bellows are similar in a Space X:

- (a) X is p*gb-regular.
- (b) Let $p \in X$ and G be a p*gb-open set $p \in X$. Then \exists a p*gb-open set $M \ni : p \in M \subseteq p*gbCl(M) \subseteq G$.
- (c) Assume F is a p*gb-closed set. Therefore the intersection of all F's p*gb-closed, p*gb-neighborhoods is
 F.
- (d) Given any set C and any p*gb-open set D, \exists a p*gb-open set M \exists : C \cap M $\neq \phi$ and p*gbCl(M) \subseteq D.
- (e) Assume C is a non-empty set and D is a p*gb-closed set, and $C \cap D = \varphi$. Then there are separate p*gb-open sets M and N \ni : $C \cap M \neq \varphi$ and $D \subseteq N$ exist.

Proof: (a) \Rightarrow (b): Suppose X is p*gb-regular. Let $p \in X$ and G be a p*gb-open set that includes p. Then $p \notin X \setminus G$ and X \G is p*gb-closed. Since X is p*gb-regular, $\exists p*gb$ -open sets M and N \ni : M \cap N= φ and $p \in M$, X \G \subseteq N. As a result, M \subseteq X \N \subseteq G and therefore p*gbCl(M) \subseteq p*gbCl(X \N)=X \N \subseteq G. That is, $p \in M \subseteq p*gbCl(M) \subseteq G$.

(b) \Rightarrow (c): Let F to be any p*gb-closed set and p \notin F. X\F is then p*gb-open and p \in X\F. According to (b), \exists a p*gb-open set M with the condition p \in M \subseteq p*gbCl(M) \subseteq X\F. Thus F \subseteq X\p*gbCl(M) \subseteq X\M. Now X\M is p*gb-closed, F's p*gb-nghd that does not contain p. Hence, the intersection of all p*gb-closed, p*gb-nhds of F is F.

(c)⇒(d):Suppose C∩D≠ ϕ and D is p*gb-open. Let x∈C∩D. D is p*gb-open, therefore X\D is p*gb-closed and p∉X\D. ∃ a p*gb-open set G ∋: X\D_G_N for the p*gb-neighborhood N of X\D. Consider M= X\N. As a result, M is p*gb-open p∈M. Furthermore, C∩M≠ ϕ and p*gbCl(M)_X\G_D.

(d)⇒(e): Let C be any non-empty set and D be p*gb-closed with C∩D= ϕ . Then X\D is p*gb-open and C∩(X\D)≠ ϕ . According to our assumptions, ∃ a p*gb-open set M ∋: C∩M≠ ϕ , p*gbCl(M)⊆X\D. Take N=X\p*gbCl(M). Since p*gbCl(M) is p*gb-closed, N is p*gb-open. Also D⊆N and M∩N⊆p*gbCl(M)∩(X\p*gbCl(M))= ϕ .

(e) \Rightarrow (a): Let S be p*gb-closed and p \notin S. Then S \cap {x}= ϕ . By (e), separate p*gb-open sets M and N exist \ni : M \cap {p} $\neq \phi$ and S \subseteq N. That is, M and N are separate p*gb-open sets, each containing p and S. This demonstrates that X is p*gb-regular.

elSSN1303-5150

5091

NeuroQuantology | November 2022 | Volume 20 | Issue 19 | Page 5089-5094 | doi: 10.48047/ng.2022.20.19.ng99473 I. ARUNA GLORY SUDHA et al/ Regular Spaces Associated with p*gb-Open Sets

Corollary 3.4. The bellows are similar in a Space X:

- (a) X is p*gb-regular.
- (b) Let $p \in X$ and G be a open set $p \in X$. Then \exists a p^*gb -open set M \exists : $p \in M \subseteq p^*gbCl(M) \subseteq G$.
- (c) Assume F is a closed set. Therefore the intersection of all F's p*gb-closed, p*gb-neighborhoods is F.
- (d) Given any set C and any open set D, \exists a p*gb-open set M \exists : C \cap M $\neq \phi$ and p*gbCl(M) \subseteq D.
- (e) Assume C is a non-empty set and D is a closed set, and $C \cap D = \varphi$. Then there are separate p*gb-open sets M and N \ni : C \cap M $\neq \phi$ and D \subset N exist.

Proof. Since every open set is p*gb-open and follows from above theorem.

Theorem 3.5. A Space X is p*gb-regular $\Leftrightarrow \exists$ a p*gb-open set M \exists : $p \in M \subseteq p*gbCl(M) \subseteq N$ for every $p \in X$ and every p*gb-nbhd N containing p.

Proof.Let X be a p*gb-regular space. Let N be any p*gb-nbhd of x. then there exists p*gb-open set G such that $x \in G \subseteq N$. Since X\G is p*gb-closed and $x \notin X \setminus G$, by definition there exists p*gb-open sets L and M such that X\G_L and x \in M and L \cap M= ϕ so that M \subseteq X\L. It follows that p*gbCl(M) \subseteq p*gbCl(X\L)=X\L. Also X\G \subseteq L implies 5092 X\L \subseteq G \subseteq N. Hence x \in M \subseteq p*gbCl(M) \subseteq N. Conversely, suppose for every x \in X and every p*gb-nbhd N containing x, there exists a p*gb-open set M such that $x \in M \subseteq p^*gbCl(M) \subseteq N$. Let F be any p*gb-closed and $x \notin F$. Then x∈X\F. Since X\F is p*gb-open set, X\F is p*gb-nbhd containing x. By hypothesis there exists a p*gb-open set M such that $x \in M$ and $p*gbCl(M) \subseteq X \setminus F$. This implies that, $F \subseteq X \setminus p*gbCl(M)$. Then $X \setminus p*gbCl(M)$ is p*gb-open set containing F. Also $M \cap (X \setminus p^*gbCl(M)) = \varphi$. Hence the space is p^*gb -regular.

Corollary 3.6. A topological space X is p*gb-regularif and only if every $x \in X$ and every nbhd N containing x, there exists a p*gb-open set M such that $x \in M \subseteq p*gbCl(M) \subseteq N$.

Proof. Since every nbhd is p*gb-nbhd and follows from above theorem.

Corollary 3.7. A topological space X is p^*gb -regularif and only if every $x \in X$ and every p^*gb -nbhd N containing x, there exists a p*gb-open set M such that $x \in M \subseteq cl(M) \subseteq N$.

Proof. Since $p*gbCl(M) \subset cl(M)$ and follows from above theorem.

Theorem 3.8. A Space X is p*gb-regular \Leftrightarrow there are p*gb-open sets U and V of X for any p*gb-closed set F of X and each $p \in X \setminus F \ni : p \in U$ and $F \subseteq V$ and $p^*gbCl(U) \cap p^*gbCl(V) = \varphi$.

Proof: Suppose X is p*gb-regular. Let F be a p*gb-closed set in X and $x \notin F$. Then there exist p*gb-open sets U_xand V such that $x \in U_x$, $F \subseteq V$ and $U_x \cap V = \varphi$. This implies that $U_x \cap p^* gbCl(V) = \varphi$. Also $p^* gbCl(V)$ is a $p^* gb-closed$ set and $x \notin p^*gbCl(V)$. Since X is p^*gb -regular, there exist p^*gb -open sets G and H of X such that $x \in G$, p*gbCl(V) \subseteq H and G \cap H= ϕ . This implies p*gbCl(G) \cap H \subseteq p*gbCl(X\H) \cap H =(X\H) \cap H= ϕ . Take U=G. Now U and V are p*gb-open sets in X such that $x \in U$ and $F \subseteq V$. Also p*gbCl(U) \cap p*gbCl(V) \subseteq p*gbCl(G) \cap H= φ . Conversely, suppose for each p*gb-closed set F ofX and each $x \in X \setminus F$, there exist p*gb-open sets U and V of X such that elSSN1303-5150

 $x \in U$ and $F \subseteq V$ and $p^*gbCl(U) \cap p^*gbCl(V) = \varphi$. Now $U \cap V \subseteq p^*gbCl(U) \cap p^*gbCl(V) = \varphi$. Therefore $U \cap V = \varphi$. This proves that X is p*gb-regular.

Corollary 3.9. A topological space X is p*gb-regular if and only if for each closed set F of X and each $x \in X \setminus F$, there exist p*gb-open sets U and V of X such that $x \in U$ and $F \subseteq V$ and $p*gbCl(U) \cap p*gbCl(V) = \varphi$.

Theorem 3.10.Let X be a p*gb-regular space.

(i) In X, each p*gb-open set is a union of p*gb-closed sets.

(ii) In X, each p*gb-closed set is an intersection of p*gb-open sets.

Proof: (i) Suppose X is p*gb-regular. Assume G is a p*gb-open set and $p\in G$. F=X\G is thus p*gb-closed and $p\notin F$. Since X is p*gb-regular, separate p*gb-open sets U_p and V exist in X \ni : $p \in U_p$ and $F \subseteq V$. Since $U_p \cap F \subseteq U_p \cap V = \phi$, we have $U_p \subseteq X \setminus F=G$. Take $V_p = p^*gbCl(U_p)$. Then V_p is a p*gb-closed set and $V_x \cap V = \phi$. Now $F \subseteq V$ implies that $V_p \cap F \subseteq V_p \cap V = \varphi$. Therefore $p \in V_p \subseteq X \setminus F = G$ is the result. This demonstrates that $G = \bigcup \{V_p : p \in G\}$. As a result, G is a union of p*gb-closed sets.

(ii) Follows from (i) and set theoretic properties.

5093

Definition 3.11. A function $f:X \rightarrow Y$ is called a p*gb-continuous if the inverse image of each open set in Y is p*gb-open in X.

Theorem 3.12. If f is a p*gb-continuous and closed injection of a topological space X into a regular space Y and if every p*gb-closed set in X is closed, then X is p*gb-regular.

Proof: Let $x \in X$ and A be a p*gb-closed set in X not containing x. Then by assumption, A is closed in X. Since f is closed, f(A) is a closed set in Y not containing f(x). Since Y is regular, there exist disjoint open sets V_1 and V_2 in Y such that $f(x) \in V_1$ and $f(A) \subseteq V_2$. Since f is p*gb-continuous, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are disjoint p*gb-open sets in X containing x and A respectively. Hence X is p*gb-regular.

Theorem 3.13. If f is a continuous p*gb-open bijection of a regular space X into a space Y and if every p*gbclosed set in Y is closed, then Y is p*gb-regular.

Proof: Let y i Y and B be a p*gb-closed set in Y not containing y. Then by assumption, B is closed in Y. Since f is a continuous bijection, $f^{-1}(B)$ is a closed set in X not containing the point $f^{-1}(y)$. Since X is regular, there exist disjoint open sets U₁ and U₂ in X such that $f^{-1}(y) \in U_1$ and $f^{-1}(B) \subseteq U_2$. Since f is p*gb-open, f(U₁) and f (U₂) are disjoint p*gb-open sets in Y containing x and B respectively. Hence Y is p*gb-regular.

References

48, pp.59-64.

[2] Levine, N,1970,'Generalized closed sets in topology', Rand. Circ. Mat. Palermo, 19(2), pp.89-96. [1] Andrijevic, D,1996, 'On b-open sets', Mat.Vesnik

NeuroQuantology | November 2022 | Volume 20 | Issue 19 |Page 5089-5094 | doi: 10.48047/nq.2022.20.19.nq99473 I. ARUNA GLORY SUDHA et al/ Regular Spaces Associated with p*gb-Open Sets

[3] Selvi, T, PunithaDharani, A, 2012, 'Some New Class of Nearly Closed and Open Sets', Asian Journal of Current Engineering and Maths, vol. 1(5), pp.305-307.

[4]Aruna Glory Sudha, I, 2023,Zion Chella Ruth, S, 'More on p*gb-Closed Sets in Topological Spaces', International Journal of Mathematical Archive, 14(1), ISSN:2229 5046, pp.10-14.

[5]Willard, S,1970,'General Topology', Addison Wesley.

5094