


Volume 20 No 22 (2022)
Download PDF
A Framework for Diabetes Diagnosis Based on Type-2 Fuzzy Semantic Ontology Approach
Mr.V.Manikandabalaji and Dr. R.Sivakumar
Abstract
Diabetes mellitus is a significant metabolic disorder that may last a lifetime and affects a great
number of people throughout the world. Two major critiques that may be levelled at the ontologybased tools that are presently being used to analyse and treat diabetes are an increase in semantic
incompatibility and an inability to interpret the information. Both of these complaints have the potential
to be severe issues. Furthermore, clinical decision support systems, often known as CDSSs, play an
important role in the diagnosis of diabetes. As a consequence, the outcomes of this study project
advised that a new semantically intelligent Type-2 fuzzy CDSS for diabetes diagnosis be developed. The
following steps are included in the proposed system: feature definition, semantic modelling, type-2
fuzzy modelling, and knowledge reasoning. This research endeavour is critical since there are currently
so few works that address the formal integration of ontology semantics with Functional Electrical
Stimulation (FES) reasoning, particularly in the medical arena. The ontology is a feature of FES that may
be needed or selected as optional. The system that was constructed takes into consideration the
ontology-semantic similarity of the concepts that are relevant to diabetes complications and symptoms
while doing a fuzzy rule analysis. The proposed approach is put to the test using a real-world dataset,
and the results show that it has the potential to help both individuals and medical experts provide more
accurate diabetes diagnoses. The suggested technique was tested on a real dataset, and the findings
show that it has the potential to help physicians and patients diagnose diabetes mellitus more correctly.
Keywords
Diabetes mellitus – Clinical decision support system (CDSS) - Ontology reasoning – Functional Electrical Stimulation (FES) - Type-2 Fuzzy
Copyright
Copyright © Neuroquantology
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the Neuroquantology are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJECSE right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.