


Volume 20 No 12 (2022)
Download PDF
A Hybrid Approach for Extractive Multi-Document Summarization
NadeemAkhtar, MMSufyanBeg, HiraJaved
Abstract
In this paper, we present a method for
extractive multi-document summarization using a
hybrid approach for sentence scoring that combines the
benefits of regression model and topic model. Fusing the
regression model based score with topic model based
score combines the benefit of both methods for ranking
sentences and words that are scored on the basis of both
surface and topical features. We use support vector
regression based model for obtaining sentence scores
and sparseTLM topic model for obtaining word scores.
Both sentence and word scores are combined using
BiRank algorithm for sentence ranking. An Integer
Linear Programming method is used to select summary
sentences maximizing coverage of summary based on
ROUGE scores. The proposed method is shown to
outperform existing state-of-the-art methods.
Keywords
Text Summarization, Topic Model, Support Vector Regression, BiRank Algorithm
Copyright
Copyright © Neuroquantology
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the Neuroquantology are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJECSE right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.