


Volume 20 No 10 (2022)
Download PDF
An Approach Based on Parallel Computing for Performance Tuning of the Denoising Filter Used in Medical Imaging
Pawan Kumar, Ajeet Kumar Srivastava , Dr. Krishna Raj , Kirti Rahul Kadam, Dr Anil Trimbakrao Gaikwad , Dillip Narayan Sahu
Abstract
The cutting-edge technologies in eHealthcare include telemedicine and artificial intelligence. A
digital health framework has been introduced by the Indian government to promote research in
these new fields in order to solve the issue of access to competent medical care. This would allow
for cutting-edge telemedicine installations. In these computer-assisted systems, MRI diagnostics is
essential since it serves as the foundation for making diagnoses of disorders. The study presented
here offers bilateral filter as the best suitable denoising method to produce high-quality MR images.
However, the filter's computational complexity makes it difficult to analyse huge images quickly
enough. The study presented here presents a fast bilateral filter using a GPU-based parallel method
for MR image denoising, taking into account the real-time demands of remote healthcare. The GPU
onchip shared memory and constant cache are explored while implementing the denoising
algorithm utilising a novel memory optimization approach, which results in a shorter execution time.
The difficulties that bilateral filters for MR image denoising present are thoroughly discussed in this
study. In order to achieve higher speedup, it covers the new memory optimization strategy
suggested for GPU-based implementation of the filter. It also addresses the suggested fix to improve
the filter's denoising effectiveness for noisy MR pictures
Keywords
Denoising, Filter, MR Image, Healthcare, Diagnostics and GPU.
Copyright
Copyright © Neuroquantology
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the Neuroquantology are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJECSE right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.