Volume 20 No 12 (2022)
 Download PDF
DISEASE CATEGORIZATION WITH CLINICAL DATA USING OPTIMIZED BAT ALGORITHM AND FUZZY VALUE
Mr.Naresh Patel K M, Mr.Shivkumarswamy G M, Dr.Ashoka K
Abstract
In this paper, design a Bat-based Random Forest (BbRF) framework to enhance the performance of categorizing diseases with fuzzy values which also protect the privacy of the developed scheme. It involves pre-processing, attributes selection, fuzzy value generation, and classification. Additionally, the developed framework is implemented in Python tool and patient disease datasets are used for implementation. Moreover, pre-processing remove the error and noise, attributes are selected based on the duration of diseases. Finally, classify the patient disease based on the generated fuzzy value. To prove the efficiency of the developed framework, attained results are compared with other existing techniques in terms of accuracy, sensitivity, specificity, F-measure, and precision.
Keywords
Bat-based Random Forest, Fuzzy value, Optimization
Copyright
Copyright © Neuroquantology

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Articles published in the Neuroquantology are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJECSE right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.