


Volume 20 No 12 (2022)
Download PDF
Energy- and Area-Efficient VLSI Architecture based MMSE Detector for Massive MIMO Systems
Manasa M Dr. Thanuja T C
Abstract
This paper presents a VLSI implementation based MMSE Detector for massive MIMO system scheme for
low power. Minimum-mean-square-error (MMSE) detection is increasingly relevant for massive
multiple-input multiple-output (MIMO) systems. MMSE suffers from high computational complexity and
low parallelism because of the increasing number of users and antennas in massive MIMO systems. The
current implementation is based architecture design to iteratively estimate signals. First, a recursive
conjugate gradient detection algorithm is proposed that achieves high parallelism and low complexity
through iteration. Second, a quadrant-certain-based initial methodthat improves detection accuracy
without added complexity is proposed. Third, an approximated log likelihood ratio (LLR) computation
method is proposed to achieve simplified calculation. The analyses show that compared with related
methods, the proposed RCG algorithm reduces computational complexity and exploits the potential
parallelism. RCG is mathematically demonstrated to achieve low approximated error. Based on the RCG
method, architecture is proposed in 64-QAM massive MIMO system. The massive MIMO system is
designed, implemented and tested in 45nm technology for synthesis and simulation results were carried
out from Xilinx 14.3. The proposed architecture with MMSE detector technique has 54 numbers in logic
gates and consumes 252 nw in a power dissipation and minimum area of 2010nm.
Keywords
Massive multiple-input multiple-output (MIMO), detection, very-large-scale integration (VLSI), wireless communications
Copyright
Copyright © Neuroquantology
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles published in the Neuroquantology are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJECSE right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.