Volume 20 No 21 (2022)
 Download PDF
HEALTH MONITORING TO FALL DETECTION USING DEEP LEARNING TRANSFER
RAMAKRISHNA PORANDLA, MADUGULA PRAVEEN KUMAR, SARADA MACHA
Abstract
Accidental falls are a major source of loss of autonomy, deaths, and injuries among the elderly. Accidental falls also have a remarkable impact on the costs of national health systems. Thus, extensive research and development of fall detection and rescue systems are a necessity. Technologies related to fall detection should be reliable and effective to ensure a proper response. This article provides a comprehensive review on state-of-the-art fall detection technologies considering the most powerful deep learning methodologies. We reviewed the most recent and effective deep learning methods for fall detection and categorized them into three categories: Convolutional Neural Network (CNN) based systems, Long Short-Term Memory (LSTM) based systems, and Auto-encoder based systems. Among the reviewed systems, three dimensional (3D) CNN, CNN with 10-fold cross-validation, LSTM with CNN based systems performed the best in terms of accuracy, sensitivity, specificity, etc. The reviewed systems were compared based on their working principles, used deep learning methods, used datasets, performance metrics, etc. This review is aimed at presenting a summary and comparison of existing state-of-the-art deep learning based fall detection systems to facilitate future development in this field.
Keywords
Auto-encoder, convolutional neural network, deep learning, fall detection, long short-term memory, recurrent convolutional network, recurrent neural network, review, surveillance system.
Copyright
Copyright © Neuroquantology

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Articles published in the Neuroquantology are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJECSE right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.