Volume 20 No 12 (2022)
 Download PDF
Hybrid Deep Learning Algorithms for Big Output Spaces: A Comparative Analysis
Dr. Jitendra Sheetlani , Dr. J. P. Patra , Bhimsen Moharana
Abstract
Classification of imbalanced data is an important research problem as lots of real-world data sets have skewed class distributions in which the majority of data instances (examples) belong to one class and far fewer instances belong to others. While in many applications, the minority instances represent the concept of interest (e.g., fraud in banking operations, abnormal cell in medical data, etc.), a classifier induced from an imbalanced data set is more likely to be biased towards the majority class and show very poor classification accuracy on the minority class. Despite extensive research efforts, imbalanced data classification remains one of the most challenging problems in data mining and machine learning, especially for multimedia data. To tackle this challenge, in this paper, we propose an extended deep learning approach to achieve promising performance in classifying skewed multimedia data sets. Specifically, we investigate the integration of bootstrapping methods and a state-of-the-art deep learning approach, Convolutional Neural Networks (CNNs), with extensive empirical studies. Because deep learning approaches such as CNNs are usuallycomputationally expensive, we propose to feed low-level features to CNNs and prove its feasibility in achieving promising performance while saving a lot of training time
Keywords
Dr. Jitendra Sheetlani , Dr. J. P. Patra , Bhimsen Moharana
Copyright
Copyright © Neuroquantology

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Articles published in the Neuroquantology are available under Creative Commons Attribution Non-Commercial No Derivatives Licence (CC BY-NC-ND 4.0). Authors retain copyright in their work and grant IJECSE right of first publication under CC BY-NC-ND 4.0. Users have the right to read, download, copy, distribute, print, search, or link to the full texts of articles in this journal, and to use them for any other lawful purpose.